Solveeit Logo

Question

Question: If x1=3sinωt and x2 = 4cosωt then...

If x1=3sinωt and x2 = 4cosωt then

A

x1x2\frac{x_1}{x_2} is independent of t

B

Average value of <x12+x22><x_1^2 + x_2^2> from t = 0 to t = 2πω\frac{2\pi}{\omega} is 12.5

C

(x13)2+(x24)2=1(\frac{x_1}{3})^2 + (\frac{x_2}{4})^2 = 1

D

Average value of $$ from t = 0 to t = 2πω\frac{2\pi}{\omega} is zero

Answer

B, C, D

Explanation

Solution

  1. Option (A):

    x1x2=3sinωt4cosωt=34tanωt(depends on t)\frac{x_1}{x_2} = \frac{3\sin\omega t}{4\cos\omega t} = \frac{3}{4}\tan\omega t \quad (\text{depends on } t)

    So, (A) is false.

  2. Option (B):

    x12+x22=9sin2ωt+16cos2ωtx_1^2 + x_2^2 = 9\sin^2\omega t + 16\cos^2\omega t

    Over one period, the averages are:

    sin2ωt=cos2ωt=12\langle\sin^2\omega t\rangle = \langle\cos^2\omega t\rangle = \frac{1}{2}

    Thus,

    x12+x22=9(12)+16(12)=9+162=252=12.5\langle x_1^2+x_2^2\rangle = 9\left(\frac{1}{2}\right) + 16\left(\frac{1}{2}\right) = \frac{9+16}{2} = \frac{25}{2} = 12.5

    So, (B) is true.

  3. Option (C):

    (x13)2+(x24)2=sin2ωt+cos2ωt=1\left(\frac{x_1}{3}\right)^2+\left(\frac{x_2}{4}\right)^2 = \sin^2\omega t + \cos^2\omega t = 1

    So, (C) is true.

  4. Option (D):

    x1x2=3sinωt×4cosωt=12sinωtcosωt=6sin2ωtx_1x_2 = 3\sin\omega t \times 4\cos\omega t = 12\sin\omega t\cos\omega t = 6\sin2\omega t

    The average of sin2ωt\sin2\omega t over one full period is zero. So, (D) is true.