Solveeit Logo

Question

Question: If \(x = y\cos\frac{2\pi}{3} = z\cos\frac{4\pi}{3}\), then \(xy + yz + zx =\)...

If x=ycos2π3=zcos4π3x = y\cos\frac{2\pi}{3} = z\cos\frac{4\pi}{3}, then xy+yz+zx=xy + yz + zx =

A

– 1

B

0

C

1

D

2

Answer

0

Explanation

Solution

We have x=ycos2π3=zcos4π3x = y\cos\frac{2\pi}{3} = z\cos\frac{4\pi}{3}

x1=y2=z2=λ\Rightarrow \frac{x}{1} = \frac{y}{- 2} = \frac{z}{- 2} = \lambda (say)

x=λ,6muy=2λ,z=2λ\Rightarrow x = \lambda,\mspace{6mu} y = - 2\lambda,z = - 2\lambda

xy+yz+zx=2λ2+4λ22λ2=0\therefore xy + yz + zx = - 2\lambda^{2} + 4\lambda^{2} - 2\lambda^{2} = 0.