Solveeit Logo

Question

Question: If \( x + y = z \) then find the value of \( {\cos ^2}x + {\cos ^2}y + {\cos ^2}z - 2\cos x\cos y\co...

If x+y=zx + y = z then find the value of cos2x+cos2y+cos2z2cosxcosycosz{\cos ^2}x + {\cos ^2}y + {\cos ^2}z - 2\cos x\cos y\cos z .
(A) cos2z{\cos ^2}z
(B) sin2z{\sin ^2}z
(C) 00
(D) 11

Explanation

Solution

Hint : In this problem, first we will use the trigonometric formula which is given by cos2θ=1+cos2θ2{\cos ^2}\theta = \dfrac{{1 + \cos 2\theta }}{2} . Then, we will use another trigonometric formula which is given by 2cosαcosβ=cos(α+β)+cos(αβ)2\cos \alpha \cos \beta = \cos \left( {\alpha + \beta } \right) + \cos \left( {\alpha - \beta } \right) . After simplification and using given information x+y=zx + y = z , we will use one more trigonometric formula which is given by cosα+cosβ=2cos(α+β2)cos(αβ2)\cos \alpha + \cos \beta = 2\cos \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right) to find required answer.

Complete step-by-step answer :
In this problem, it is given that x+y=zx + y = z and we have to find the value of cos2x+cos2y+cos2z2cosxcosycosz(1){\cos ^2}x + {\cos ^2}y + {\cos ^2}z - 2\cos x\cos y\cos z \cdots \cdots \left( 1 \right)
We know that cos2θ=1+cos2θ2{\cos ^2}\theta = \dfrac{{1 + \cos 2\theta }}{2} . Use this formula in the first and second term of expression (1)\left( 1 \right) . So, it can be written as
(1+cos2x2)+(1+cos2y2)+(cos2z)(2cosxcosy)cosz(2)\left( {\dfrac{{1 + \cos 2x}}{2}} \right) + \left( {\dfrac{{1 + \cos 2y}}{2}} \right) + \left( {{{\cos}^2}z} \right) - \left( {2\cos x\cos y} \right)\cos z \cdots \cdots \left( 2 \right)
Also we know that
2cosαcosβ=cos(α+β)+cos(αβ)2\cos \alpha \cos \beta = \cos \left( {\alpha + \beta } \right) + \cos \left( {\alpha - \beta } \right) .
Use this formula in the bracket of the last term of expression (2)\left( 2 \right) and simplify other terms. So, it can be written as
(12+cos2x2)+(12+cos2y2)+(cos2z)[cos(x+y)+cos(xy)]cosz  =(12+12)+12(cos2x+cos2y)+(cos2z)[cos(x+y)cosz+cos(xy)cosz] =1+12(cos2x+cos2y)+(cos2z)cos(x+y)coszcos(xy)cosz(3)   \Rightarrow \left( {\dfrac{1}{2} + \dfrac{{\cos 2x}}{2}} \right) + \left( {\dfrac{1}{2} + \dfrac{{\cos 2y}}{2}} \right) + \left( {{{\cos }^2}z} \right) - \left[ {\cos \left( {x + y} \right) + \cos \left( {x - y} \right)} \right]\cos z \; = \left( {\dfrac{1}{2} + \dfrac{1}{2}} \right) + \dfrac{1}{2}\left( {\cos 2x + \cos 2y} \right) + \left( {{{\cos }^2}z} \right) - \left[ {\cos \left( {x + y} \right)\cos z + \cos \left( {x - y} \right)\cos z} \right] \\\ = 1 + \dfrac{1}{2}\left( {\cos 2x + \cos 2y} \right) + \left( {{{\cos }^2}z} \right) - \cos \left( {x + y} \right)\cos z - \cos \left( {x - y} \right)\cos z \cdots \cdots \left( 3 \right) \;
Also we know that
cosα+cosβ=2cos(α+β2)cos(αβ2)\cos \alpha + \cos \beta = 2\cos \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right) .
Use this formula in the second term of expression (3)\left( 3 \right) and then substitute x+y=zx + y = z . So, it can be written as
1+12[2cos(2x+2y2)cos(2x2y2)]+(cos2z)coszcoszcos(xy)cosz =1+cos(x+y)cos(xy)+cos2zcos2zcos(xy)cosz =1+coszcos(xy)+cos2zcos2zcoszcos(xy)(4)   \Rightarrow 1 + \dfrac{1}{2}\left[ {2\cos \left( {\dfrac{{2x + 2y}}{2}} \right)\cos \left( {\dfrac{{2x - 2y}}{2}} \right)} \right] + \left( {{{\cos }^2}z} \right) - \cos z\cos z - \cos \left( {x - y} \right)\cos z \\\ = 1 + \cos \left( {x + y} \right)\cos \left( {x - y} \right) + {\cos ^2}z - {\cos ^2}z - \cos \left( {x - y} \right)\cos z \\\ = 1 + \cos z\cos \left( {x - y} \right) + {\cos ^2}z - {\cos ^2}z - \cos z\cos \left( {x - y} \right) \cdots \cdots \left( 4 \right) \;
By cancelling equal terms with opposite sign from expression (4)\left( 4 \right) , we get
cos2x+cos2y+cos2z2cosxcosycosz=1{\cos ^2}x + {\cos ^2}y + {\cos ^2}z - 2\cos x\cos y\cos z = 1
So, the correct answer is “Option D”.

Note : In this type of problems, trigonometric identities and formulas are very useful to find the required answer. Here we used the formula cos2θ=1+cos2θ2{\cos ^2}\theta = \dfrac{{1 + \cos 2\theta }}{2} at the first step of solution but we can start with the formula 2cosαcosβ=cos(α+β)+cos(αβ)2\cos \alpha \cos \beta = \cos \left( {\alpha + \beta } \right) + \cos \left( {\alpha - \beta } \right) . Also we can use the trigonometric formula cos(x+y)=cosxcosysinxsiny\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y and Pythagorean identity sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 in the given problem.