Solveeit Logo

Question

Question: If x, y, z be positive real numbers such that $\log_{2x} z = 3$, $\log_{5y} z = 6$ and $\log_{xy} z...

If x, y, z be positive real numbers such that

log2xz=3\log_{2x} z = 3, log5yz=6\log_{5y} z = 6 and logxyz=2/3\log_{xy} z = 2/3

then the value of z is in the form of m/n in lowest form then find value of n - m

Answer

9

Explanation

Solution

The given equations are:

  1. log2xz=3\log_{2x} z = 3
  2. log5yz=6\log_{5y} z = 6
  3. logxyz=2/3\log_{xy} z = 2/3

We can convert these logarithmic equations into exponential form using the definition logba=c    bc=a\log_b a = c \iff b^c = a.

From equation 1: (2x)3=z    8x3=z(2x)^3 = z \implies 8x^3 = z

From equation 2: (5y)6=z    56y6=z(5y)^6 = z \implies 5^6 y^6 = z

From equation 3: (xy)2/3=z(xy)^{2/3} = z

Alternatively, we can use the change of base formula for logarithms, logba=1logab\log_b a = \frac{1}{\log_a b}.

Applying this formula to the given equations:

  1. 1logz(2x)=3    logz(2x)=13\frac{1}{\log_z (2x)} = 3 \implies \log_z (2x) = \frac{1}{3}
  2. 1logz(5y)=6    logz(5y)=16\frac{1}{\log_z (5y)} = 6 \implies \log_z (5y) = \frac{1}{6}
  3. 1logz(xy)=23    logz(xy)=32\frac{1}{\log_z (xy)} = \frac{2}{3} \implies \log_z (xy) = \frac{3}{2}

Now, use the logarithm property logb(MN)=logbM+logbN\log_b (MN) = \log_b M + \log_b N:

From (1): logz2+logzx=13\log_z 2 + \log_z x = \frac{1}{3} (Equation A)

From (2): logz5+logzy=16\log_z 5 + \log_z y = \frac{1}{6} (Equation B)

From (3): logzx+logzy=32\log_z x + \log_z y = \frac{3}{2} (Equation C)

Let A=logzxA = \log_z x and B=logzyB = \log_z y.

Equation A becomes: logz2+A=13    A=13logz2\log_z 2 + A = \frac{1}{3} \implies A = \frac{1}{3} - \log_z 2

Equation B becomes: logz5+B=16    B=16logz5\log_z 5 + B = \frac{1}{6} \implies B = \frac{1}{6} - \log_z 5

Equation C becomes: A+B=32A + B = \frac{3}{2}

Substitute the expressions for A and B into Equation C:

(13logz2)+(16logz5)=32(\frac{1}{3} - \log_z 2) + (\frac{1}{6} - \log_z 5) = \frac{3}{2}

Combine the constant terms and the logarithm terms:

13+16(logz2+logz5)=32\frac{1}{3} + \frac{1}{6} - (\log_z 2 + \log_z 5) = \frac{3}{2}

Find a common denominator for the fractions:

26+16(logz2+logz5)=32\frac{2}{6} + \frac{1}{6} - (\log_z 2 + \log_z 5) = \frac{3}{2}

36(logz2+logz5)=32\frac{3}{6} - (\log_z 2 + \log_z 5) = \frac{3}{2}

12(logz2+logz5)=32\frac{1}{2} - (\log_z 2 + \log_z 5) = \frac{3}{2}

Apply the logarithm property logbM+logbN=logb(MN)\log_b M + \log_b N = \log_b (MN):

12logz(2×5)=32\frac{1}{2} - \log_z (2 \times 5) = \frac{3}{2}

12logz10=32\frac{1}{2} - \log_z 10 = \frac{3}{2}

Isolate the logarithm term:

logz10=3212-\log_z 10 = \frac{3}{2} - \frac{1}{2}

logz10=22-\log_z 10 = \frac{2}{2}

logz10=1-\log_z 10 = 1

logz10=1\log_z 10 = -1

Convert this logarithmic equation back to exponential form:

z1=10z^{-1} = 10

1z=10\frac{1}{z} = 10

z=110z = \frac{1}{10}

The value of z is 1/101/10. This is in the form m/n, where m = 1 and n = 10.

This fraction is in its lowest form since 1 and 10 have no common factors other than 1.

We need to find the value of n - m.

n - m = 10 - 1 = 9.