Solveeit Logo

Question

Mathematics Question on Sequence and series

If x,y,zx, y, z are positive integers, then value of expression (x+y)(y+z)(z+x)(x + y)(y + z)(z + x) is

A

8xyz\ne 8xyz

B

8xyz\ge 8xyz

C

8xyz\le 8 xyz

D

4xyz4xyz

Answer

8xyz\ge 8xyz

Explanation

Solution

We know that, A.M.G.MA.M. \ge G.M. x+y2xy,y+z2yz\Rightarrow \frac{x+y}{2} \ge \sqrt{xy}, \frac{y+z}{2} \ge \sqrt{yz} and z+x2zx\frac{z+x}{2} \ge\sqrt{zx} Multiplying the three inequalities, we get x+y2y+z2x+z2(xy)(yz)(zx) \frac{x+y}{2}\cdot \frac{y+z}{2}\cdot\frac{ x+z}{2} \ge\sqrt{ \left(xy\right)\left(yz\right)\left(zx\right)} or, (x+y)(y+z)(z+x)8xyz\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge 8xyz