Solveeit Logo

Question

Mathematics Question on Determinants

If xyzx y z are not equal and \neq 0, \neq 1 the value of logxlogylogz log2xlog2ylog2z log3xlog3ylog3z\begin{vmatrix} \log x& \log y& \log z\\\ \log 2x& \log 2y& \log 2z\\\ \log 3x& \log 3y& \log 3z\end{vmatrix} is equal to

A

log(xyz)log(xyz)

B

log(6xyz)log(6 xyz)

C

00

D

log(x+y+z)log(x + y + z)

Answer

00

Explanation

Solution

We have logxlogylogz log2xlog2ylog2z log3xlog3ylog3z\begin{vmatrix}\log x&\log y&\log z\\\ \log 2x& \log2y&\log2z\\\ \log3x&\log 3y&\log3z\end{vmatrix}
Applying R2R2R1R_{2} \rightarrow R_{2}-R_{1} and R3R3R1R_{3} \rightarrow R_{3}-R_{1},
=logxlogylogz log2+logxlog2+logylog3+logz log3+logxlog3+logylog3+logz= \begin{vmatrix}\log x&\log y&\log z\\\ \log 2+\log x&\log 2+\log y&\log 3+\log z \\\ \log 3 + \log x&\log 3+\log y&\log 3+\log z\end{vmatrix}
=log2log3logxlogylogz 111 111=\log \,2 \cdot \log \,3\begin{vmatrix} \log x & \log y & \log z \\\ 1 & 1 & 1 \\\ 1 & 1 & 1\end{vmatrix}
=0= 0
[R2\left[\because R_{2}\right. and R3R_{3} are same]