Solveeit Logo

Question

Question: If x, y, z are integers in A.P. lying between 1 and 9 and x51, y41 and z31 are three digit numbers ...

If x, y, z are integers in A.P. lying between 1 and 9 and x51,

y41 and z31 are three digit numbers then the value of 543x51y41z31xyz\left| \begin{matrix} 5 & 4 & 3 \\ x51 & y41 & z31 \\ x & y & z \end{matrix} \right| is

A

x+y+zx + y + z

B

xy+zx - y + z

C

0

D

None of these

Answer

0

Explanation

Solution

x51=100x+50+1\because x51 = 100x + 50 + 1,

y41=100y+40+1y41 = 100y + 40 + 1

z31=100z+30+1z31 = 100z + 30 + 1

Δ=543100x+50+1100y+40+1100z+30+1xyz\therefore\Delta = \left| \begin{matrix} 5 & 4 & 3 \\ 100x + 50 + 1 & 100y + 40 + 1 & 100z + 30 + 1 \\ x & y & z \end{matrix} \right|Applying R2R2100R310R1R_{2} \rightarrow R_{2} - 100R_{3} - 10R_{1}

5 & 4 & 3 \\ 1 & 1 & 1 \\ x & y & z \end{matrix} \right| = x - 2y + z$$ $\because$ x, y, z are in A.P. , $\therefore$ $x - 2y + z = 0$, $\therefore$ $\Delta = 0$