Solveeit Logo

Question

Mathematics Question on Sequence and series

If x,y,zx, y, z are in A.P. and tan1x,tan1y\tan^{-1}x, \tan^{-1}y and tan1z\tan^{-1}z are also in A.P., then

A

2x=3y=6z2x = 3y = 6z

B

6x=3y=2z6x = 3y = 2z

C

6x=4y=3z6x = 4y = 3z

D

x=y=zx = y = z

Answer

x=y=zx = y = z

Explanation

Solution

As x,y,zx, y, z are in A.P. 2y=x+z\Rightarrow \:\:\: 2y = x +z ...(i)
tan1x,tan1y\tan^{-1}x, \tan^{-1}y and tan1z\tan^{-1}z are also in A.P., then 2tan1y=tan1x,+tan1z2\tan^{-1}y = \tan^{-1}x, + \tan^{-1}z
2tan1y,+tan1(x+z1xz)2\tan^{-1}y, + \tan^{-1} \left(\frac{x +z}{1 -xz} \right)
tan1(2y1y2)=tan1(x+z1xz)\Rightarrow \:\:\:\tan^{-1} \left(\frac{2y}{1 - y^2} \right) = \tan^{-1} \left(\frac{x +z}{1 -xz} \right)
Thus y2=xzy^2 = xz... (ii)
From (i) and (ii), we get x=y=zx = y = z.
Remark : y0y \neq 0 is implicit to make any of the choice correct.