Solveeit Logo

Question

Question: If x, y, z are different and\(\left| \begin{matrix} x & x^{2} & 1 + x^{3} \\ y & y^{2} & 1 + y^{3} ...

If x, y, z are different

andxx21+x3yy21+y3zz21+z3\left| \begin{matrix} x & x^{2} & 1 + x^{3} \\ y & y^{2} & 1 + y^{3} \\ z & z^{2} & 1 + z^{3} \end{matrix} \right| = 0; then xyz =

A

–3

B

–2

C

–1

D

None

Answer

–1

Explanation

Solution

xx21yy21zz21\left| \begin{matrix} x & x^{2} & 1 \\ y & y^{2} & 1 \\ z & z^{2} & 1 \end{matrix} \right| + xx2x3yy2y3zz2z3\left| \begin{matrix} x & x^{2} & x^{3} \\ y & y^{2} & y^{3} \\ z & z^{2} & z^{3} \end{matrix} \right| = 0

1xx21yy21zz2\left| \begin{matrix} 1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2} \end{matrix} \right| + xyz 1xx21yy21zz2\left| \begin{matrix} 1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2} \end{matrix} \right| = 0

∴ xyz = –1.