Solveeit Logo

Question

Mathematics Question on Properties of Determinants

If x,y,zx, y, z are all positive and are the pth,qthp^{th}, q^{th} and rthr^{th} terms of a geometric progression respectively, then the value of the determinant logxp1 logyq1 logzr1=0\begin{vmatrix} \log x & p & 1 \\\ \log y & q & 1 \\\ \log z & r & 1 \end{vmatrix} = 0 equals

A

logxyz\log \, xyz

B

(p1)(q1)(r1)(p -1) (q - 1)(r -1)

C

pqrpqr

D

0

Answer

0

Explanation

Solution

Let aa and RR be the first term and common ratio of a GP.
Tp=aRP1=x\therefore T_p = aR^{P-1} = x
Tq=aRq1=yT_q = aR^{q-1} = y
And Tr=aRr1=zT_r = aR^{r-1} = z
 logx=loga+(p1)logR\Rightarrow \ \log x = \log a + (p - 1) \log R
 logy=loga+(q1)logR\ \log y = \log a + (q - 1) \log R
and logz=loga+(r1)logR\log z = \log a + (r -1) \log R
logxx1 logyy1 logzz1=loga+p1logRp1 loga+q1logRq1 loga+r1logRr1\therefore \begin{vmatrix} \log x & x & 1 \\\ \log y & y & 1 \\\ \log z & z & 1 \end{vmatrix}= \begin{vmatrix} \log a + p - 1 & \log R & p & 1 \\\ \log a + q - 1 & \log R & q & 1 \\\ \log a + r - 1 & \log R & r & 1 \end{vmatrix}
=logap1 logaq1 logar1+p1logRp1 q1logRq1 r1logRr1= \begin{vmatrix} \log a & p & 1 \\\ \log a & q & 1 \\\ \log a & r & 1 \end{vmatrix} + \begin{vmatrix} p - 1 & \log R & p & 1 \\\ q - 1 & \log R & q & 1 \\\ r - 1 & \log R & r & 1 \end{vmatrix}
=loga  1p1 1q1 1r1+logR  p1p11 q1q11 r1r11= \log a \ \ \begin{vmatrix} 1 & p & 1 \\\ 1 & q & 1 \\\ 1& r & 1 \end{vmatrix} + \log R \ \ \begin{vmatrix} p - 1 & p - 1 & 1 \\\ q - 1 & q - 1 & 1 \\\ r - 1 & r - 1 & 1 \end{vmatrix}
C2C2C3C_2 \to C_2 - C_3
=0+0=0= 0 + 0 = 0 (\because two columns are identical)