Solveeit Logo

Question

Question: If \(x + y + z = 180^{o},\) then \(\cos 2x + \cos 2y - \cos 2z\) is equal to...

If x+y+z=180o,x + y + z = 180^{o}, then cos2x+cos2ycos2z\cos 2x + \cos 2y - \cos 2z is equal to

A

4sinx.siny.sinz4\sin x.\sin y.\sin z

B

14sinx.siny.cosz1 - 4\sin x.\sin y.\cos z

C

3cosθ4sinθ3\cos\theta - 4\sin\theta

D

cosA.cosB.cosC\cos A.\cos B.\cos C

Answer

14sinx.siny.cosz1 - 4\sin x.\sin y.\cos z

Explanation

Solution

cos2x+cos2ycos2z\cos 2x + \cos 2y - \cos 2z

=2cos(x+y)cos(xy)2cos2z+1= 2\cos(x + y)\cos(x - y) - 2\cos^{2}z + 1

=2cos(πz)cos(xy)2cos2z+1= 2\cos(\pi - z)\cos(x - y) - 2\cos^{2}z + 1

=12cosz{cos(xy)cos(x+y)}= 1 - 2\cos z\{\cos(x - y) - \cos(x + y)\}

=12cosz2sinxsiny=14sinxsinycosz= 1 - 2\cos z2\sin x\sin y = 1 - 4\sin x\sin y\cos z.