Solveeit Logo

Question

Question: If \(x+y+z={{180}^{\circ }}\), then \(\cos 2x+\cos 2y-\cos 2z\) is equal to A. \(4\sin x\sin y\si...

If x+y+z=180x+y+z={{180}^{\circ }}, then cos2x+cos2ycos2z\cos 2x+\cos 2y-\cos 2z is equal to
A. 4sinxsinysinz4\sin x\sin y\sin z
B. 14sinxsinycosz1-4\sin x\sin y\cos z
C. 4sinxsinysinz14\sin x\sin y\sin z-1
D. cosxcosycosz\cos x\cos y\cos z

Explanation

Solution

We first take the sum of angles for the trigonometric ratios. We also use the multiple angle formula of cos2x=12sin2x\cos 2x=1-2{{\sin }^{2}}x. We convert them to their multiple forms. We take 2sinx-2\sin x common and find the required solution.

Complete step by step answer:
It is given that x+y+z=πx+y+z=\pi . We get y+z=πxy+z=\pi -x and x=π(y+z)x=\pi -\left( y+z \right).
We are going to use the formulas of sum of angles for the trigonometric ratios. We have cosAcosB=2sin(A+B2)sin(BA2)\cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right).
We use the representation of A=2y;B=2zA=2y;B=2z and get
cos2ycos2z =2sin(2y+2z2)sin(2z2y2) =2sin(y+z)sin(zy) \begin{aligned} & \cos 2y-\cos 2z \\\ & =2\sin \left( \dfrac{2y+2z}{2} \right)\sin \left( \dfrac{2z-2y}{2} \right) \\\ & =2\sin \left( y+z \right)\sin \left( z-y \right) \\\ \end{aligned}
We change the angle and get
2sin(y+z)sin(zy) =2sin(πx)sin(zy) =2sinxsin(zy) \begin{aligned} & 2\sin \left( y+z \right)\sin \left( z-y \right) \\\ & =2\sin \left( \pi -x \right)\sin \left( z-y \right) \\\ & =2\sin x\sin \left( z-y \right) \\\ \end{aligned}
We also use the multiple angle formula of cos2x=12sin2x\cos 2x=1-2{{\sin }^{2}}x.
Therefore,
cos2x+cos2ycos2z =12sin2x+2sin(y+z)sin(zy) =12sin2x+2sinxsin(zy) \begin{aligned} & \cos 2x+\cos 2y-\cos 2z \\\ & =1-2{{\sin }^{2}}x+2\sin \left( y+z \right)\sin \left( z-y \right) \\\ & =1-2{{\sin }^{2}}x+2\sin x\sin \left( z-y \right) \\\ \end{aligned}
We take 2sinx-2\sin x common and get
cos2x+cos2ycos2z =12sinx[sinxsin(zy)] \begin{aligned} & \cos 2x+\cos 2y-\cos 2z \\\ & =1-2\sin x\left[ \sin x-\sin \left( z-y \right) \right] \\\ \end{aligned}
We again change the sinx\sin x in the bracket. sinx=sin[π(y+z)]=sin(y+z)\sin x=\sin \left[ \pi -\left( y+z \right) \right]=\sin \left( y+z \right).
cos2x+cos2ycos2z =12sinx[sin(y+z)sin(zy)] \begin{aligned} & \cos 2x+\cos 2y-\cos 2z \\\ & =1-2\sin x\left[ \sin \left( y+z \right)-\sin \left( z-y \right) \right] \\\ \end{aligned}
We now use sinAsinB=2cos(A+B2)sin(AB2)\sin A-\sin B=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right).
We use the representation of A=y+z;B=zyA=y+z;B=z-y and get
sin(y+z)sin(zy) =2cos(y+z+zy2)sin(y+zz+y2) =2coszsiny \begin{aligned} & \sin \left( y+z \right)-\sin \left( z-y \right) \\\ & =2\cos \left( \dfrac{y+z+z-y}{2} \right)\sin \left( \dfrac{y+z-z+y}{2} \right) \\\ & =2\cos z\sin y \\\ \end{aligned}
Therefore,
cos2x+cos2ycos2z =12sinx[sin(y+z)sin(zy)] =14sinxsinycosz \begin{aligned} & \cos 2x+\cos 2y-\cos 2z \\\ & =1-2\sin x\left[ \sin \left( y+z \right)-\sin \left( z-y \right) \right] \\\ & =1-4\sin x\sin y\cos z \\\ \end{aligned}
Therefore, the correct option is option (B).

Note:
Although for elementary knowledge the principal domain is enough to solve the problem. But if mentioned to find the general solution then the domain changes to x-\infty \le x\le \infty . In that case we have to use the formula x=nπ±ax=n\pi \pm a for cos(x)=cosa\cos \left( x \right)=\cos a where 0aπ0\le a\le \pi .