Solveeit Logo

Question

Question: If \({x^y} = {y^x}\), then \(x(x - y\log x)\dfrac{{dy}}{{dx}}\) is equal to \[1)\]\(y(y - x\log y)...

If xy=yx{x^y} = {y^x}, then x(xylogx)dydxx(x - y\log x)\dfrac{{dy}}{{dx}} is equal to
1)$$$y(y - x\log y)$ 2)y(y + x\log y)$ $$3)x(x + y\log x) $$4)$$$x(y - x\log y)

Explanation

Solution

Hint : We have to find the value of the givenx(xylogx)dydxx(x - y\log x)\dfrac{{dy}}{{dx}}. And it’s given that xy=yx{x^y} = {y^x} . We solve the question using the given relation , the concept of logarithmic functions and the concept of differentiation of functions . We will solve this question using the chain rule and product rule .
The Product Rule : d(uv)dx=u×dvdx+v×dudx\dfrac{{d(uv)}}{{dx}} = u \times \dfrac{{dv}}{{dx}} + v \times \dfrac{{du}}{{dx}}.

Complete step-by-step answer :
Differentiation , in mathematics , is the process of finding the derivative , or the rate of change of a given function . In contrast to the abstract nature of the theory behind it , the practical technique of differentiation can be carried out by purely algebraic manipulations , using three basic derivatives , four rules of operation , and a knowledge of how to manipulate functions . We can solve any of the problems using the rules of operations i.e. addition , subtraction , multiplication and division .
Given :
xy=yx{x^y} = {y^x}
Taking log both sides , we get
log(xy)=log(yx)\log \left( {{x^y}} \right) = \log \left( {{y^x}} \right)----(1)
We know the basic formulas of log that ,
log(xn)=nlogx\log \left( {{x^n}} \right) = n\log x
So, the equation (1) can be expressed as:
ylogx=xlogyy\log x = x\log y------(2)
Now , differentiating (2) with respect to ‘x’ , we get
Now , using the product rule mentioned above in the hint , we get
ddx(ylogx)=ddx(xlogy)\dfrac{{d}}{{dx}}\left( {y\log x} \right) = \dfrac{{d}}{{dx}}\left( {x\log y} \right)
dydxlogx+y×(1x)=logy+x×(1y)dydx\dfrac{{dy}}{{dx}}\log x + y \times \left( {\dfrac{1}{x}} \right) = \log y + x \times \left( {\dfrac{1}{y}} \right)\dfrac{{dy}}{{dx}}
On simplifying , we get
dydxlogx+yx=logy+(xy)dydx\dfrac{{dy}}{{dx}}\log x + \dfrac{y}{x} = \log y + \left( {\dfrac{x}{y}} \right)\dfrac{{dy}}{{dx}},
Taking the differential terms on same side of the equation
dydxlogx(xy)dydx=logy(yx)\dfrac{{dy}}{{dx}}\log x - \left( {\dfrac{x}{y}} \right)\dfrac{{dy}}{{dx}} = \log y - \left( {\dfrac{y}{x}} \right)
dydx(logxxy)=logy(yx)\dfrac{{dy}}{{dx}}\left( {\log x - \dfrac{x}{y}} \right) = \log y - \left( {\dfrac{y}{x}} \right)
Taking the LCM on both sides of the equation,
dydx(ylogxxy)=(xlogyyx)\dfrac{{dy}}{{dx}}\left( {\dfrac{{y\log x - x}}{y}} \right) = \left( {\dfrac{{x\log y - y}}{x}} \right)
dydx=(xlogyyxylogxxy)(xlogyyx)×(yylogxx)\dfrac{{dy}}{{dx}} = \left( {\dfrac{{\dfrac{{x\log y - y}}{x}}}{{\dfrac{{y\log x - x}}{y}}}} \right) \Rightarrow \left( {\dfrac{{x\log y - y}}{x}} \right) \times \left( {\dfrac{y}{{y\log x - x}}} \right)
Taking (-1) common from both numerator and denominator , we get
dydx=(y(yxlogy)x(xylogx))\dfrac{{dy}}{{dx}} = \left( {\dfrac{{y\left( {y - x\log y} \right)}}{{x\left( {x - y\log x} \right)}}} \right)
x(xylogx)dydx=y(yxlogy)x\left( {x - y\log x} \right)\dfrac{{dy}}{{dx}} = y\left( {y - x\log y} \right)
Thus , the value of x(xylogx)dydxx\left( {x - y\log x} \right)\dfrac{{dy}}{{dx}} is y(yxlogy)y\left( {y - x\log y} \right)
Hence , the correct option is (1) .
So, the correct answer is “Option 1”.

Note : We differentiated y with respect to ‘x’ to finddydx\dfrac{{dy}}{{dx}}.
We know the differentiation of various function :
d[cos x]dx= sin x\dfrac{{d\left[ {cos{\text{ }}x} \right]}}{{dx}} = {\text{ }} - sin{\text{ }}x
d[sin x] dx = cos x\dfrac{{d\left[ {sin{\text{ }}x} \right]{\text{ }}}}{{dx}}{\text{ }} = {\text{ }}cos{\text{ }}x
d[xn]=nx(n1)d[{x^n}] = n{x^{(n - 1)}}
d[tanx]=sec2xd[\tan x] = {sec^2}x