Solveeit Logo

Question

Question: If \({X^Y} + {Y^X} = {a^b}\) , then find \(\dfrac{{dy}}{{dx}}\) ....

If XY+YX=ab{X^Y} + {Y^X} = {a^b} , then find dydx\dfrac{{dy}}{{dx}} .

Explanation

Solution

In this question we have to find out dydx\dfrac{{dy}}{{dx}} so, firstly we have to change these exponential terms into easier form so that it can be easily differentiated. So, use the log function to convert it into an easy format and differentiate with the following chain rule of differentiation.

Complete step-by-step solution:
Given: XY+YX=ab{X^Y} + {Y^X} = {a^b} , then find dydx\dfrac{{dy}}{{dx}} .
In this question differentiation rules will be followed, so when we differentiate some terms with respect to dxdx then chain rule will be followed.
So, XY+YX=ab\because {X^Y} + {Y^X} = {a^b}
Now, differentiate both sides with the help of dxdx
d(XY+YX)dx=dabdx\therefore \dfrac{{d\left( {{X^Y} + {Y^X}} \right)}}{{dx}} = \dfrac{{d{a^b}}}{{dx}}
ddx(XY)+ddx(YX)=0\Rightarrow \dfrac{d}{{dx}}({X^Y}) + \dfrac{d}{{dx}}({Y^X}) = 0
Let XY=A{X^Y} = A and YX=B{Y^X} = B
Applying both sides log function:
YlogX=logA\therefore Y\log X = \log A and XlogY=logB.X\log Y = \log B.
Now, differentiate both sides with respect to dxdx , we have
YdlogXdx+logXdydx=dlogAdx×dAdx YX+logXdydx=1A×dAdx dAdx=A(YX+logXdydx) dAdx=A(YX+logXdydx)(1)  \Rightarrow Y\dfrac{{d\log X}}{{dx}} + \log X\dfrac{{dy}}{{dx}} = \dfrac{{d\log A}}{{dx}} \times \dfrac{{dA}}{{dx}} \\\ \Rightarrow \dfrac{Y}{X} + \operatorname{l} ogX\dfrac{{dy}}{{dx}} = \dfrac{1}{A} \times \dfrac{{dA}}{{dx}} \\\ \Rightarrow \dfrac{{dA}}{{dx}} = A\left( {\dfrac{Y}{X} + \log X\dfrac{{dy}}{{dx}}} \right) \\\ \therefore \dfrac{{dA}}{{dx}} = A\left( {\dfrac{Y}{X} + \log X\dfrac{{dy}}{{dx}}} \right) \to (1) \\\
Now, logB=XlogY\because \log B = X\log Y
dlogBdB×dBdx=XdlogYdy×dydx+logYdxdx 1B×dBdx=xy×dydx+logY dBdx=B(xy×dydx+logY)(2)  \Rightarrow \dfrac{{d\log B}}{{dB}} \times \dfrac{{dB}}{{dx}} = X\dfrac{{d\log Y}}{{dy}} \times \dfrac{{dy}}{{dx}} + \log Y\dfrac{{dx}}{{dx}} \\\ \Rightarrow \dfrac{1}{B} \times \dfrac{{dB}}{{dx}} = \dfrac{x}{y} \times \dfrac{{dy}}{{dx}} + \log Y \\\ \therefore \dfrac{{dB}}{{dx}} = B\left( {\dfrac{x}{y} \times \dfrac{{dy}}{{dx}} + \log Y} \right) \to (2) \\\
Now, adding equation (1) and equation (2)
dAdx+dBdxddx(XY)+ddx(YX)=0 dXYdx+ddx(YX)A(yx+logXdydx)+B(xy×dydx+logY)=0  \because \dfrac{{dA}}{{dx}} + \dfrac{{dB}}{{dx}} \Rightarrow \dfrac{d}{{dx}}({X^Y}) + \dfrac{d}{{dx}}({Y^X}) = 0 \\\ \Rightarrow \dfrac{{d{X^Y}}}{{dx}} + \dfrac{d}{{dx}}({Y^X}) \Rightarrow A\left( {\dfrac{y}{x} + \log X\dfrac{{dy}}{{dx}}} \right) + B\left( {\dfrac{x}{y} \times \dfrac{{dy}}{{dx}} + \log Y} \right) = 0 \\\
Now, putting the value of AA and BB
\because {X^Y}\left( {\dfrac{y}{x} + \log X\dfrac{{dy}}{{dx}}} \right) + {Y^x}\left( {\dfrac{x}{y} \times \dfrac{{dy}}{{dx}} + \log Y} \right) = 0 \\\ \Rightarrow Y{X^{Y - 1}} + \dfrac{{dy}}{{dx}}\left( {{X^Y}\log X + X{Y^{X - 1}}} \right) + {Y^X}\log Y = 0 \\\

dydx=(YXlogY+YXY1)(XYlogX+XYX1)\therefore \dfrac{{dy}}{{dx}} = - \dfrac{{\left( {{Y^X}\log Y + Y{X^{Y - 1}}} \right)}}{{\left( {{X^Y}\log X + X{Y^{X - 1}}} \right)}}
Hence, the value of dydx\dfrac{{dy}}{{dx}}
dydx=(YXlogY+YXY1)(XYlogX+XYX1)\dfrac{{dy}}{{dx}} = - \dfrac{{\left( {{Y^X}\log Y + Y{X^{Y - 1}}} \right)}}{{\left( {{X^Y}\log X + X{Y^{X - 1}}} \right)}}

Note: In the question exponential terms must be changed into logarithmic terms. It will help to find out the value of dydx\dfrac{{dy}}{{dx}} easily and one more thing students should always use proper differentiation with the help of chain rule otherwise the answer will be wrong.