Solveeit Logo

Question

Mathematics Question on General and Particular Solutions of a Differential Equation

If xy.yx=16,{{x}^{y}}.{{y}^{x}}=16, then dydx\frac{dy}{dx} at (2, 2) is

A

1

B

2

C

1-1

D

2-2

Answer

1-1

Explanation

Solution

xyyx=16{{x}^{y}}{{y}^{x}}=16
Taking log on both sides,
y log x+x log y=log 16y\text{ }log\text{ }x+x\text{ }log\text{ }y=log\text{ }16
Differentiating on both sides,
yx+logxdydx+xydydx+logy=0\frac{y}{x}+\log x\frac{dy}{dx}+\frac{x}{y}\frac{dy}{dx}+\log y=0
(xy+logx)dydx=(yx+logy)\left( \frac{x}{y}+\log x \right)\frac{dy}{dx}=-\left( \frac{y}{x}+\log y \right)
dydx=yx(y+xlogy)(x+ylogx)\frac{dy}{dx}=-\frac{y}{x}\frac{(y+x\log y)}{(x+y\log x)}
(dydx)at(2,2)=22(2+2log22+2log2)=1{{\left( \frac{dy}{dx} \right)}_{at(2,2)}}=\frac{-2}{2}\left( \frac{2+2\log 2}{2+2\log 2} \right)=-1