Question
Question: If \(x+y={{\tan }^{-1}}y\,and\,{{y}^{''}}=f\left( y \right){{y}^{'}}\,then\,f\left( y \right)=\) (...
If x+y=tan−1yandy′′=f(y)y′thenf(y)=
(a) y(1+y2)1
(b) y(1+y2)3
(c) y(1+y2)2
(d) y(1+y2)−2
Solution
We start solving the problem by differentiating both LHS and RHS with respect to x. We use the properties dxd(f(x)+g(x))=dxdf(x)+dxdg(x) and dxd(f(y))=dydf(y)×dxdy to proceed further through the problem. We then use dyd(tan−1y)=1+y21 and make necessary calculations and arrangements in the problem to get the desired result.
Complete step by step answer:
Given equation: x+y=tan−1y........(i)
On differentiating both sides with respect to x-
\dfrac{d\left( x+y \right)}{dx}=\dfrac{d\left( {{\tan }^{-1}}y \right)}{dy}............(ii)$$$$$
Important property of differentiation-
a. \dfrac{d}{dx}\left( f\left( x \right)+g\left( x \right) \right)=\dfrac{d}{dx}f\left( x \right)+\dfrac{d}{dx}g\left( x \right).b.\dfrac{d}{dx}\left( f\left( y \right) \right)=\dfrac{d}{dy}f\left( y \right)\times \dfrac{dy}{dx}.Byusingtheproperty\dfrac{d}{dx}\left( f\left( x \right)+g\left( x \right) \right)=\dfrac{d}{dx}f\left( x \right)+\dfrac{d}{dx}g\left( x \right)in equation (ii) -
$$\dfrac{dx}{dx}+\dfrac{dy}{dx}=\dfrac{d\left( {{\tan }^{-1}}y \right)}{dx}.............(iii)$$
We will use standard notation of differentiation: \begin{aligned}
& y'=\dfrac{dy}{dx},and \\
& y''=\dfrac{{{d}^{2}}y}{d{{x}^{2}}} \\
\end{aligned}Now,furthersolvingequation(iii),weget:1+y'=\dfrac{d}{dx}\left( {{\tan }^{-1}}y \right)Byusingproperty\dfrac{d}{dx}\left( fy \right)=\dfrac{d}{dy}fy\times \dfrac{dy}{dx}$ , we get