Solveeit Logo

Question

Mathematics Question on Derivatives of Functions in Parametric Forms

If (x +y )sin u = x2y2x^2y^2, then xux+yuy=x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} =

A

sin u

B

cosec u

C

2 tan u

D

tan u

Answer

tan u

Explanation

Solution

Given : (x + y) sin U = x2y2x^2y^2
(x+y)sinU=x2y2\left(x+y\right)\sin U =x^{2}y^{2}
sinU=x2y2x+y=v\Rightarrow \sin U = \frac{x^{2}y^{2}}{x+y} =v (let)
Here n = 2 - 1 = 1
Euler's theorem x.vx+y.vy=nvx. \frac{\partial v}{\partial x} +y. \frac{\partial v}{\partial y} =nv
xsinUx+ysinUy=sinU\therefore x \frac{\partial\sin U}{\partial x} + y \frac{\partial\sin U}{\partial y} =\sin U
x.cosUUx+y.cosU.Uy=sinU\Rightarrow x.\cos U \frac{\partial U}{\partial x} +y .\cos U. \frac{\partial U}{\partial y} =\sin U
xUx+yUy=sinUcosU=tanU\Rightarrow x \frac{\partial U}{\partial x} +y \frac{\partial U}{\partial y} = \frac{\sin U}{\cos U} =\tan U
xUx+yUy=tanU\Rightarrow x \frac{\partial U}{\partial x} + y \frac{\partial U}{\partial y} =\tan U