Question
Mathematics Question on Derivatives of Functions in Parametric Forms
If (x +y )sin u = x2y2, then x∂x∂u+y∂y∂u=
A
sin u
B
cosec u
C
2 tan u
D
tan u
Answer
tan u
Explanation
Solution
Given : (x + y) sin U = x2y2
(x+y)sinU=x2y2
⇒sinU=x+yx2y2=v (let)
Here n = 2 - 1 = 1
Euler's theorem x.∂x∂v+y.∂y∂v=nv
∴x∂x∂sinU+y∂y∂sinU=sinU
⇒x.cosU∂x∂U+y.cosU.∂y∂U=sinU
⇒x∂x∂U+y∂y∂U=cosUsinU=tanU
⇒x∂x∂U+y∂y∂U=tanU