Solveeit Logo

Question

Question: If \(x = y\log (xy)\) then find \(\dfrac{{dy}}{{dx}}\) ....

If x=ylog(xy)x = y\log (xy) then find dydx\dfrac{{dy}}{{dx}} .

Explanation

Solution

We will use chain rule in derivatives that is ddx(f(x)g(x))=g(x)d(f(x))dx+f(x)d(g(x))dx\dfrac{d}{{dx}}\left( {f(x)g(x)} \right) = g(x)\dfrac{{d(f(x))}}{{dx}} + f(x)\dfrac{{d(g(x))}}{{dx}}
And use the fact that log(ab)=log(a)+log(b)\log (ab) = \log (a) + \log (b) ,and then we will separate the dydx\dfrac{{dy}}{{dx}} term to find the required expression.

Complete step by step solution:
Our main equation is
x=ylog(xy)\Rightarrow x = y\log (xy) …(i)
First, we will find the derivative of the expression log(xy)\log (xy) which is
d(log(xy))dx\Rightarrow \dfrac{{d\left( {\log (xy)} \right)}}{{dx}}
Using log(ab)=log(a)+log(b)\log (ab) = \log (a) + \log (b) where a=x,b=ya = x,b = y we get
d(log(x)+log(y))dx\Rightarrow \dfrac{{d\left( {\log (x) + \log (y)} \right)}}{{dx}}
Using d(a+b)dx=dadx+dbdx\dfrac{{d(a + b)}}{{dx}} = \dfrac{{da}}{{dx}} + \dfrac{{db}}{{dx}} , we get,
d(log(x))dx+d(log(y))dx\Rightarrow \dfrac{{d(\log (x))}}{{dx}} + \dfrac{{d(\log (y))}}{{dx}}
Using d(logx)dx=1x\dfrac{{d(\log x)}}{{dx}} = \dfrac{1}{x} , we get,
1x+1ydydx\Rightarrow \dfrac{1}{x} + \dfrac{1}{y}\dfrac{{dy}}{{dx}} …(ii)
Now we will use our main equation (i) which is
x=ylog(xy)\Rightarrow x = y\log (xy)
Now we will differentiate both side with respect to x, then we get
dxdx=d(ylog(xy))dx\Rightarrow \dfrac{{dx}}{{dx}} = \dfrac{{d(y\log (xy))}}{{dx}}
Using the chain rule in differentiating we get
1=log(xy)dydx+yd(log(xy))dx\Rightarrow 1 = \log (xy)\dfrac{{dy}}{{dx}} + y\dfrac{{d(\log (xy))}}{{dx}}
Replacing d(log(xy))dx\dfrac{{d(\log (xy))}}{{dx}} by equation (ii) we get
1=log(xy)dydx+y(1x+1ydydx)\Rightarrow 1 = \log (xy)\dfrac{{dy}}{{dx}} + y\left( {\dfrac{1}{x} + \dfrac{1}{y}\dfrac{{dy}}{{dx}}} \right)
Separating dydx\dfrac{{dy}}{{dx}} we get
1=yx+(log(xy)+1)dydx\Rightarrow 1 = \dfrac{y}{x} + \left( {\log (xy) + 1} \right)\dfrac{{dy}}{{dx}}
On rearranging we get,
dydx=(1yx)(log(xy)+1)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {1 - \dfrac{y}{x}} \right)}}{{\left( {\log (xy) + 1} \right)}}
On multiplying and dividing by x we get,
dydx=(xy)x(log(xy)+1)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {x - y} \right)}}{{x\left( {\log (xy) + 1} \right)}}
Which is our required expression.

Note:
Sometimes if we just simplify the main equation, differentiation just becomes easier. One thing that we must remember when differentiation becomes complicated is that we take a subpart of the equation and differentiate it so that when applying chain rule we just replace that part with its differentiation.