Solveeit Logo

Question

Question: If \( x = y\ln \left( {xy} \right) \) , then \( \dfrac{{dy}}{{dx}} \) equals to: (A) \( \dfrac{{y...

If x=yln(xy)x = y\ln \left( {xy} \right) , then dydx\dfrac{{dy}}{{dx}} equals to:
(A) y(xy)x(x+y)\dfrac{{y\left( {x - y} \right)}}{{x\left( {x + y} \right)}}
(B) x(x+y)y(xy)\dfrac{{x\left( {x + y} \right)}}{{y\left( {x - y} \right)}}
(C) y(x+y)x(xy)\dfrac{{y\left( {x + y} \right)}}{{x\left( {x - y} \right)}}
(D) x(xy)y(x+y)\dfrac{{x\left( {x - y} \right)}}{{y\left( {x + y} \right)}}

Explanation

Solution

Hint : In the given problem, we are required to differentiate the given function in x and y: x=yln(xy)x = y\ln \left( {xy} \right) with respect to x. Since, x=yln(xy)x = y\ln \left( {xy} \right) is an implicit function, so we will have to differentiate the function x=yln(xy)x = y\ln \left( {xy} \right) with the implicit method of differentiation. So, differentiation of x=yln(xy)x = y\ln \left( {xy} \right) with respect to x will be done layer by layer using the chain rule of differentiation as in the given function, we cannot isolate the variables x and y.

Complete step-by-step answer :
So, we have, x=yln(xy)x = y\ln \left( {xy} \right) .
Differentiating both sides of the equation with respect to x, we get,
ddx(x)=ddx(yln(xy))\Rightarrow \dfrac{d}{{dx}}\left( x \right) = \dfrac{d}{{dx}}\left( {y\ln \left( {xy} \right)} \right)
We know that the derivative of xx with respect to x is 11 and derivative of ln(x)\ln \left( x \right) with respect to x is (1x)\left( {\dfrac{1}{x}} \right) .
We also know the product rule of differentiation ddx(f(x)×g(x))=f(x)×ddx(g(x))+g(x)×ddx(f(x))\dfrac{d}{{dx}}\left( {f(x) \times g(x)} \right) = f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right) + g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right) .
So, applying product rule in the right side of the equation, we get,
1=yddx(ln(xy))+ln(xy)dydx\Rightarrow 1 = y\dfrac{d}{{dx}}\left( {\ln \left( {xy} \right)} \right) + \ln \left( {xy} \right)\dfrac{{dy}}{{dx}}
Hence, we have to apply the chain rule of differentiation in order to differentiate ln(xy)\ln \left( {xy} \right) with respect to x,
1=yxy(d(xy)dx)+ln(xy)dydx\Rightarrow 1 = \dfrac{y}{{xy}}\left( {\dfrac{{d\left( {xy} \right)}}{{dx}}} \right) + \ln \left( {xy} \right)\dfrac{{dy}}{{dx}}
Again using the product rule of differentiation in order to simplify the expression,
1=yxy(xdydx+y(1))+ln(xy)dydx\Rightarrow 1 = \dfrac{y}{{xy}}\left( {x\dfrac{{dy}}{{dx}} + y\left( 1 \right)} \right) + \ln \left( {xy} \right)\dfrac{{dy}}{{dx}}
Cancelling the common factors in numerator and denominator, we get,
1=1x(xdydx+y(1))+ln(xy)dydx\Rightarrow 1 = \dfrac{1}{x}\left( {x\dfrac{{dy}}{{dx}} + y\left( 1 \right)} \right) + \ln \left( {xy} \right)\dfrac{{dy}}{{dx}}
Now, opening the brackets, we get,
1=dydx+yx+ln(xy)dydx\Rightarrow 1 = \dfrac{{dy}}{{dx}} + \dfrac{y}{x} + \ln \left( {xy} \right)\dfrac{{dy}}{{dx}}
Keeping all the terms consisting dydx\dfrac{{dy}}{{dx}} on the right side and shifting the rest of the terms on the left side of the equation, we get
1yx=dydx(1+ln(xy))\Rightarrow 1 - \dfrac{y}{x} = \dfrac{{dy}}{{dx}}\left( {1 + \ln \left( {xy} \right)} \right)
1yx(1+ln(xy))=dydx\Rightarrow \dfrac{{1 - \dfrac{y}{x}}}{{\left( {1 + \ln \left( {xy} \right)} \right)}} = \dfrac{{dy}}{{dx}}
Taking LCM, we get,
dydx=xyx(1+ln(xy))\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{x - y}}{{x\left( {1 + \ln \left( {xy} \right)} \right)}}
But the options given to us in the question don't have this expression. So, we would have to simplify the expression to match the options.
The given expression is x=yln(xy)x = y\ln \left( {xy} \right) .
Evaluating the value of ln(xy)\ln \left( {xy} \right) , we get,
ln(xy)=xy\Rightarrow \ln \left( {xy} \right) = \dfrac{x}{y}
So, putting the value of ln(xy)\ln \left( {xy} \right) in dydx=xyx(1+ln(xy))\dfrac{{dy}}{{dx}} = \dfrac{{x - y}}{{x\left( {1 + \ln \left( {xy} \right)} \right)}}, we get,
dydx=xyx(1+xy)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{x - y}}{{x\left( {1 + \dfrac{x}{y}} \right)}}
Taking LCM, we get,
dydx=xyx(y+xy)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{x - y}}{{x\left( {\dfrac{{y + x}}{y}} \right)}}
Simplifying the expression further, we get,
dydx=y(xy)x(y+x)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{y\left( {x - y} \right)}}{{x\left( {y + x} \right)}}
So, the derivative of x=yln(xy)x = y\ln \left( {xy} \right) is y(xy)x(y+x)\dfrac{{y\left( {x - y} \right)}}{{x\left( {y + x} \right)}}.
Hence, the option (A) is correct.
So, the correct answer is “Option A”.

Note : Implicit functions are those functions that involve two variables and the two variables are not separable and cannot be isolated from each other. Hence, we have to follow a certain method to differentiate such functions and also apply the chain rule of differentiation. We must remember the simple derivatives of basic functions to solve such problems.