Solveeit Logo

Question

Mathematics Question on Matrices

If X+Y=[70 25 ]X+Y=\left[ \begin{matrix} 7 & 0 \\\ 2 & 5 \\\ \end{matrix} \right] and XY=[30 03 ]X-Y=\left[ \begin{matrix} 3 & 0 \\\ 0 & 3 \\\ \end{matrix} \right] , then X is equal to

A

[50 04 ]\left[ \begin{matrix} 5 & 0 \\\ 0 & 4 \\\ \end{matrix} \right]

B

[70 15 ]\left[ \begin{matrix} 7 & 0 \\\ 1 & 5 \\\ \end{matrix} \right]

C

[50 14 ]\left[ \begin{matrix} 5 & 0 \\\ 1 & 4 \\\ \end{matrix} \right]

D

[71 04 ]\left[ \begin{matrix} 7 & 1 \\\ 0 & 4 \\\ \end{matrix} \right]

Answer

[50 14 ]\left[ \begin{matrix} 5 & 0 \\\ 1 & 4 \\\ \end{matrix} \right]

Explanation

Solution

Given, X+Y=[70 25 ]X+Y=\left[ \begin{matrix} 7 & 0 \\\ 2 & 5 \\\ \end{matrix} \right] ?.. (i) and
XY=[30 03 ]X-Y=\left[ \begin{matrix} 3 & 0 \\\ 0 & 3 \\\ \end{matrix} \right] ..(ii)
On adding both equation, we get
2X=[70 25 ]+[30 03 ]=[100 28 ]2X=\left[ \begin{matrix} 7 & 0 \\\ 2 & 5 \\\ \end{matrix} \right]+\left[ \begin{matrix} 3 & 0 \\\ 0 & 3 \\\ \end{matrix} \right]=\left[ \begin{matrix} 10 & 0 \\\ 2 & 8 \\\ \end{matrix} \right]
\Rightarrow X=[50 14 ]X=\left[ \begin{matrix} 5 & 0 \\\ 1 & 4 \\\ \end{matrix} \right]