Question
Question: If \(x,y\in R\) and \(\left( x+iy \right)\left( 3+2i \right)=1+i\) , then \(\left( x,y \right)\) is:...
If x,y∈R and (x+iy)(3+2i)=1+i , then (x,y) is:
a). (1,51)
b). (131,131)
c). (135,131)
d). (51,51)
Solution
Hint: considering the LHS part, first we will multiply both the terms and convert it into a linear a+bi term. Then we will compare the LHS and RHS. Doing so, we will get two conditions in x and y. Solving the two simultaneous linear equations we get the value of x and y.
Complete step-by-step solution -
Considering LHS, we have,
(x+iy)(3+2i)
Multiplying, we get,
=(x×3)+(x×2i)+(iy×3)+(iy×2i)=3x+2xi+3yi+2yi2
Putting i2=1 we get,
=3x+(2x+3y)i+2y(−1)=(3x−2y)+(2x+3y)i
Now, comparing the LHS and RHS, we have,
=(3x−2y)+(2x+3y)i=1+i
Thus, we have,
3x−2y=12x+3y=1
We should solve these two equations to get values of x and y.
Therefore,
3x−2y=1............×32x+3y=1............×2
We have,
9x−6y=34x+6y=2
Adding and cancelling the like terms we get,
13x=5
Cross multiplication, we have.
x=135 .
Now, putting x=135 in 3x−2y=1we have,
3(135)−2y=1
Re arranging, we have,
1315−1=2y .
Taking LCM, we have,
1315−13=2y .
Thus, 2y=132
Therefore, y=131 .
Thus (x,y)=(135,131)
Therefore, option (c ) is correct.
Note: There is an alternate method to solve this. Consider the given equation.
(x+iy)(3+2i)=1+i
Cross multiplying , (3+2i) we have,
x+iy=3+2i1+i
Now, multiplying and dividing by the conjugate of 3+2i , that is 3−2i , we have,
x+iy=3+2i(1+i)×3−2i3−2i .
Multiplying , we have,
x+iy=(3+2i)(3−2i)(1+i)(3−2i)
Which is,
x+iy=(3×3)+(3×−2i)+(2i×3)+(2i×−2i)(1×3)+(1×−2i)+(i×3)+(i×−2i)x+iy=9−6i+6i−4i23−2i+3i−2i2
Substituting i2=−1 , we get,
x+iy=9−4(−1)3+i−2(−1)x+iy=9+43+i+2x+iy=135+i.
Splitting the terms,
x+iy=135+131i
Thus, (x,y)=(135,131) .