Solveeit Logo

Question

Question: If \[x-y=\dfrac{\pi }{4}\]; \[\cot x+\cos y=2\], and assuming x has the smallest +ve value, find \[\...

If xy=π4x-y=\dfrac{\pi }{4}; cotx+cosy=2\cot x+\cos y=2, and assuming x has the smallest +ve value, find 12xπ\dfrac{12x}{\pi }.

Explanation

Solution

- Hint: In this question it is given that xy=π4x-y=\dfrac{\pi }{4} and cotx+cosy=2\cot x+\cos y=2, so by using this we have to find the value of 12xπ\dfrac{12x}{\pi }, where x has the smallest +ve value. Since we have to find the value of x that is why we have to put the value of y in the second equation, which will give us the solutions for x, and after that we are able to find the solution.
So for this we need to know one formula which is,
cot(AB)=cotAcotB+1cotBcotA\cot \left( A-B\right) =\dfrac{\cot A\cot B+1}{\cot B-\cot A}........(1)

Complete step-by-step solution -
Here given,
cotx+cosy=2\cot x+\cos y=2
coty=2cotx\Rightarrow \cot y=2-\cot x......(2)
And xy=π4x-y=\dfrac{\pi }{4}
Taking ‘cot’ on the both side of the above equation, we get
cot(xy)=cotπ4\cot \left( x-y\right) =\cot \dfrac{\pi }{4}
cot(xy)=1\Rightarrow \cot \left( x-y\right) =1 [since, cotπ4=1\cot \dfrac{\pi }{4}=1]
Now applying formula (1) on the above equation where A=x and B=y, we get,
cotxcoty+1cotycotx=1\dfrac{\cot x\cot y+1}{\cot y-\cot x} =1
cotxcoty+1=cotycotx\Rightarrow \cot x\cot y+1=\cot y-\cot x
cotxcoty+1coty+cotx=0\Rightarrow \cot x\cot y+1-\cot y+\cot x=0 [taking all the terms in the left side]
cotxcotycoty+cotx+1=0\Rightarrow \cot x\cot y-\cot y+\cot x+1=0
(cotx1)coty+cotx+1=0\Rightarrow \left( \cot x-1\right) \cot y+\cot x+1=0
Now by putting the value of coty\cot y from the equation (2), we get,
(cotx1)(2cotx)+cotx+1=0\left( \cot x-1\right) \left( 2-\cot x\right) +\cot x+1=0
2cotx2cot2x+cotx+cotx+1=0\Rightarrow 2\cot x-2-\cot^{2} x+\cot x+\cot x+1=0
4cotxcot2x1=0\Rightarrow 4\cot x-\cot^{2} x-1=0
4cotx+cot2x+1=0\Rightarrow -4\cot x+\cot^{2} x+1=0 [multiplying both sides by (-1)]
cot2x4cotx+1=0\Rightarrow \cot^{2} x-4\cot x+1=0.....(3)
The above equation is a quadratic equation of cotx\cot x so by using quadratic formula we can write,(where a=1, b=-4, c=1)
cotx=b±b24ac2a\cot x=\dfrac{-b\pm \sqrt{b^{2}-4ac} }{2a}
cotx=(4)±(4)24×1×12×1\Rightarrow \cot x=\dfrac{-\left( -4\right) \pm \sqrt{\left( -4\right)^{2} -4\times 1\times 1} }{2\times 1}
cotx=4±1642\Rightarrow \cot x=\dfrac{4\pm \sqrt{16-4} }{2}
cotx=4±122\Rightarrow \cot x=\dfrac{4\pm \sqrt{12} }{2}
cotx=4±3×2×22\Rightarrow \cot x=\dfrac{4\pm \sqrt{3\times 2\times 2} }{2}
cotx=4±232\Rightarrow \cot x=\dfrac{4\pm 2\sqrt{3} }{2}
cotx=2(2±3)2\Rightarrow \cot x=\dfrac{2(2\pm \sqrt{3} )}{2}
cotx=2±3\Rightarrow \cot x=2\pm \sqrt{3}
Either, cotx=2+3\cot x=2+\sqrt{3} or, cotx=23\cot x=2-\sqrt{3}
As we know that cot(π12)=23\cot \left( \dfrac{\pi }{12} \right) =2-\sqrt{3}
Therefore,
cotx=cot(π12)\cot x=\cot \left( \dfrac{\pi }{12} \right)
x=π12\Rightarrow x=\dfrac{\pi }{12} [since x has the smallest +ve value]
12xπ=1\Rightarrow \dfrac{12x}{\pi } =1
Therefore, the value of 12xπ\dfrac{12x}{\pi } is 1.

Note: To solve this type of question you need to know that if any equation ax2+bx+c=0ax^{2}+bx+c=0 is in the form of quadratic equation then we can solve by using quadratic formula, which is,
x=b±b24ac2ax=\dfrac{-b\pm \sqrt{b^{2}-4ac} }{2a}
In the above equation we used cotx\cot x in place of x, this is because the equation was the quadratic equation of cotx\cot x.