Solveeit Logo

Question

Question: If \(x = y\cos \dfrac{{2\pi }}{3} = z\cos \dfrac{{4\pi }}{3}\) , then xy + yz + zx is equal to A.-...

If x=ycos2π3=zcos4π3x = y\cos \dfrac{{2\pi }}{3} = z\cos \dfrac{{4\pi }}{3} , then xy + yz + zx is equal to
A.-1
B.0
C.1
D.2

Explanation

Solution

First, simplify the given equation x=ycos2π3=zcos4π3x = y\cos \dfrac{{2\pi }}{3} = z\cos \dfrac{{4\pi }}{3} by converting the trigonometric functions into their respective values.
Now, when we get a relation between x, y and z, substitute the values in the equation xy + yz + zx, to get the answer.

Complete step-by-step answer:
It is given that, x=ycos2π3=zcos4π3x = y\cos \dfrac{{2\pi }}{3} = z\cos \dfrac{{4\pi }}{3} .
Now, first, let’s simplify cos2π3\cos \dfrac{{2\pi }}{3} and cos4π3\cos \dfrac{{4\pi }}{3} .

cos2π3=cos(ππ3) =cosπ3 =12  \cos \dfrac{{2\pi }}{3} = \cos \left( {\pi - \dfrac{\pi }{3}} \right) \\\ = - \cos \dfrac{\pi }{3} \\\ = - \dfrac{1}{2} \\\

And
cos4π3=cos(π+π3) =cosπ3 =12  \cos \dfrac{{4\pi }}{3} = \cos \left( {\pi + \dfrac{\pi }{3}} \right) \\\ = - \cos \dfrac{\pi }{3} \\\ = - \dfrac{1}{2} \\\
Now, substituting cos2π3=12\cos \dfrac{{2\pi }}{3} = - \dfrac{1}{2} and cos4π3=12\cos \dfrac{{4\pi }}{3} = - \dfrac{1}{2} in x=ycos2π3=zcos4π3x = y\cos \dfrac{{2\pi }}{3} = z\cos \dfrac{{4\pi }}{3} gives
x=y(12)=z(12) x=y2=z2 2x=y=z  \therefore x = y\left( { - \dfrac{1}{2}} \right) = z\left( { - \dfrac{1}{2}} \right) \\\ \therefore x = - \dfrac{y}{2} = - \dfrac{z}{2} \\\ \therefore - 2x = y = z \\\
Thus, we get y=z=2xy = z = - 2x .
We have to find xy + yz + zx.
\therefore xy + yz + zx =x(2x)+(2x)(2x)+x(2x) = x\left( { - 2x} \right) + \left( { - 2x} \right)\left( { - 2x} \right) + x\left( { - 2x} \right) (y=z=2x)(y = z = - 2x)
=2x2+4x22x2= - 2{x^2} + 4{x^2} - 2{x^2}
= 0
Thus, xy + yz + zx = 0.

Note: Here, cos2π3=12\cos \dfrac{{2\pi }}{3} = - \dfrac{1}{2} because cos2π3=cos(ππ3)\cos \dfrac{{2\pi }}{3} = \cos \left( {\pi - \dfrac{\pi }{3}} \right) lies in quadrant 2 and in quadrant 2, the value of any cosθ\cos \theta is negative.
Also, cos4π3=12\cos \dfrac{{4\pi }}{3} = - \dfrac{1}{2} because cos4π3=cos(π+π3)\cos \dfrac{{4\pi }}{3} = \cos \left( {\pi + \dfrac{\pi }{3}} \right) lies in quadrant 3 and in quadrant 3, the value of any cosθ\cos \theta is negative.