Question
Question: If \[x,y\] and \[z\] are three unit vectors in a three dimensional space, then the minimum value of ...
If x,y and z are three unit vectors in a three dimensional space, then the minimum value of ∣x^+y^∣2+∣y^+z^∣2+∣z^+x^∣2is
A. 23
B. 3
C. 33
D. 6
Solution
Here we use the knowledge of unit vectors that they always have magnitude equal to one. Using the formula a2=(a).(a) we expand each term which is in square form. Then using the expansion of a+b+c2 we find the value of 2(ab+bc+ca)and use it for finding the minimum value of the given vectors.
Formula used: We have the formula a+b+c2=a2+b2+c2+2(ab+bc+ca)
Complete step-by-step answer:
We have three unit vectors x,y and z. Since, we know unit vectors have magnitude 1
∣x^∣=1,∣y^∣=1,∣z^∣=1
We have to find the value of ∣x^+y^∣2+∣y^+z^∣2+∣z^+x^∣2.
We solve each term separately.
First we solve ∣x^+y^∣2
Using the formula a2=(a).(a) we can write
⇒∣x^+y^∣2=(x^+y^).(x^+y^)
Multiplying the terms in RHS of the equation
⇒∣x^+y^∣2=x^.x^+x^.y^+y^.x^+y^.y^
Using the formula a2=(a).(a) again
⇒∣x^+y^∣2=∣x^∣2+x^.y^+x^.y^+∣y^∣2
Since ∣x^∣=1,∣y^∣=1,∣z^∣=1
⇒∣x^+y^∣2=1+2x^.y^+1
⇒∣x^+y^∣2=2+2x^.y^……..(1)
Now we solve ∣y^+z^∣2
Using the formula a2=(a).(a)we can write
⇒∣y^+z^∣2=(y^+z^).(y^+z^)
Multiplying the terms in RHS of the equation
⇒∣y^+z^∣2=y^y^+y^.z^+z^.y^+z^.z^
Using the formula a2=(a).(a) again
⇒∣y^+z^∣2=∣y^∣2+y^.z^+y^.z^+∣z^∣2
Since ∣x^∣=1,∣y^∣=1,∣z^∣=1
⇒∣y^+z^∣2=1+2y^.z^+1
⇒∣y^+z^∣2=2+2y^.z^.......…(2)
Now we solve ∣z^+x^∣2
Using the formula a2=(a).(a)we can write
⇒∣z^+x^∣2=(z^+x^).(z^+x^)
Multiplying the terms in RHS of the equation
⇒∣z^+x^∣2=z^.z^+z^.x^+x^.z^+x^.x^
Using the formula a2=(a).(a)again
⇒∣z^+x^∣2=∣z^∣2+z^.x^+z^.x^+∣x^∣2
Since ∣x^∣=1,∣y^∣=1,∣z^∣=1
⇒∣z^+x^∣2=1+2z^.x^+1
⇒∣z^+x^∣2=2+2z^.x^………….…(3)
Now we substitute values from equations (1), (2) and (3) in the sum of terms
Take 2 common from the last three terms
⇒∣x^+y^∣2+∣y^+z^∣2+∣z^+x^∣2=6+2(x^.y^+y^.z^+z^.x^)……..(4)
Now we know the expansion a+b+c2=a2+b2+c2+2(ab+bc+ca).
Substitute the values of a=x^,b=y^,c=z^.
⇒∣x^+y^+z^∣2=∣x^∣2+∣y^∣2+∣z^∣2+2(x^y^+y^z^+z^x^)
Substitute the values of ∣x^∣=1,∣y^∣=1,∣z^∣=1
We can see that ∣x^+y^+z^∣2>0 as the terms on RHS are adding.
∴3+2(x^y^+y^z^+z^x^)>0
Shifting the value of constant to one side of the equation we get
⇒2(x^y^+y^z^+z^x^)>−3………….(5)
Therefore we can use equation (5) in equation (4)
⇒∣x^+y^∣2+∣y^+z^∣2+∣z^+x^∣2=6+2(x^.y^+y^.z^+z^.x^)
Substitute ⇒2(x^y^+y^z^+z^x^)>−3
Therefore the minimum value of ∣x^+y^∣2+∣y^+z^∣2+∣z^+x^∣2 is 3.
So, the correct answer is “Option B”.
Note: Students many times make mistake of writing the vectors multiplied in the bracket 2(x^y^+y^z^+z^x^) as 2(1+1+1)=2×3=6 which is wrong because we don’t know the direction of the vectors and direction plays very important role in vectors.