Solveeit Logo

Question

Question: If \[x,y\] and \[z\] are three unit vectors in a three dimensional space, then the minimum value of ...

If x,yx,y and zz are three unit vectors in a three dimensional space, then the minimum value of x^+y^2+y^+z^2+z^+x^2{\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2}is
A. 32\dfrac{3}{2}
B. 33
C. 333\sqrt 3
D. 66

Explanation

Solution

Here we use the knowledge of unit vectors that they always have magnitude equal to one. Using the formula a2=(a).(a){\left| {\overrightarrow a } \right|^2} = (\overrightarrow a ).(\overrightarrow a ) we expand each term which is in square form. Then using the expansion of a+b+c2{\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} we find the value of 2(ab+bc+ca)2(\overrightarrow a \overrightarrow b + \overrightarrow b \overrightarrow c + \overrightarrow c \overrightarrow a )and use it for finding the minimum value of the given vectors.

Formula used: We have the formula a+b+c2=a2+b2+c2+2(ab+bc+ca){\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + {\left| {\overrightarrow c } \right|^2} + 2(\overrightarrow a \overrightarrow b + \overrightarrow b \overrightarrow c + \overrightarrow c \overrightarrow a )

Complete step-by-step answer:
We have three unit vectors x,yx,y and zz. Since, we know unit vectors have magnitude 1
x^=1,y^=1,z^=1\left| {\hat x} \right| = 1,\left| {\hat y} \right| = 1,\left| {\hat z} \right| = 1
We have to find the value of x^+y^2+y^+z^2+z^+x^2{\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2}.
We solve each term separately.
First we solve x^+y^2{\left| {\hat x + \hat y} \right|^2}
Using the formula a2=(a).(a){\left| {\overrightarrow a } \right|^2} = (\overrightarrow a ).(\overrightarrow a ) we can write
x^+y^2=(x^+y^).(x^+y^)\Rightarrow {\left| {\hat x + \hat y} \right|^2} = (\hat x + \hat y).(\hat x + \hat y)
Multiplying the terms in RHS of the equation
x^+y^2=x^.x^+x^.y^+y^.x^+y^.y^\Rightarrow {\left| {\hat x + \hat y} \right|^2} = \hat x.\hat x + \hat x.\hat y + \hat y.\hat x + \hat y.\hat y
Using the formula a2=(a).(a){\left| {\overrightarrow a } \right|^2} = (\overrightarrow a ).(\overrightarrow a ) again
x^+y^2=x^2+x^.y^+x^.y^+y^2\Rightarrow {\left| {\hat x + \hat y} \right|^2} = {\left| {\hat x} \right|^2} + \hat x.\hat y + \hat x.\hat y + {\left| {\hat y} \right|^2}
Since x^=1,y^=1,z^=1\left| {\hat x} \right| = 1,\left| {\hat y} \right| = 1,\left| {\hat z} \right| = 1
x^+y^2=1+2x^.y^+1\Rightarrow {\left| {\hat x + \hat y} \right|^2} = 1 + 2\hat x.\hat y + 1
x^+y^2=2+2x^.y^..(1)\Rightarrow {\left| {\hat x + \hat y} \right|^2} = 2 + 2\hat x.\hat y …….. (1)
Now we solve y^+z^2{\left| {\hat y + \hat z} \right|^2}
Using the formula a2=(a).(a){\left| {\overrightarrow a } \right|^2} = (\overrightarrow a ).(\overrightarrow a )we can write
y^+z^2=(y^+z^).(y^+z^)\Rightarrow {\left| {\hat y + \hat z} \right|^2} = (\hat y + \hat z).(\hat y + \hat z)
Multiplying the terms in RHS of the equation
y^+z^2=y^y^+y^.z^+z^.y^+z^.z^\Rightarrow {\left| {\hat y + \hat z} \right|^2} = \hat y\hat y + \hat y.\hat z + \hat z.\hat y + \hat z.\hat z
Using the formula a2=(a).(a){\left| {\overrightarrow a } \right|^2} = (\overrightarrow a ).(\overrightarrow a ) again
y^+z^2=y^2+y^.z^+y^.z^+z^2\Rightarrow {\left| {\hat y + \hat z} \right|^2} = {\left| {\hat y} \right|^2} + \hat y.\hat z + \hat y.\hat z + {\left| {\hat z} \right|^2}
Since x^=1,y^=1,z^=1\left| {\hat x} \right| = 1,\left| {\hat y} \right| = 1,\left| {\hat z} \right| = 1
y^+z^2=1+2y^.z^+1\Rightarrow {\left| {\hat y + \hat z} \right|^2} = 1 + 2\hat y.\hat z + 1
y^+z^2=2+2y^.z^.......(2)\Rightarrow {\left| {\hat y + \hat z} \right|^2} = 2 + 2\hat y.\hat z .......… (2)
Now we solve z^+x^2{\left| {\hat z + \hat x} \right|^2}
Using the formula a2=(a).(a){\left| {\overrightarrow a } \right|^2} = (\overrightarrow a ).(\overrightarrow a )we can write
z^+x^2=(z^+x^).(z^+x^)\Rightarrow {\left| {\hat z + \hat x} \right|^2} = (\hat z + \hat x).(\hat z + \hat x)
Multiplying the terms in RHS of the equation
z^+x^2=z^.z^+z^.x^+x^.z^+x^.x^\Rightarrow {\left| {\hat z + \hat x} \right|^2} = \hat z.\hat z + \hat z.\hat x + \hat x.\hat z + \hat x.\hat x
Using the formula a2=(a).(a){\left| {\overrightarrow a } \right|^2} = (\overrightarrow a ).(\overrightarrow a )again
z^+x^2=z^2+z^.x^+z^.x^+x^2\Rightarrow {\left| {\hat z + \hat x} \right|^2} = {\left| {\hat z} \right|^2} + \hat z.\hat x + \hat z.\hat x + {\left| {\hat x} \right|^2}
Since x^=1,y^=1,z^=1\left| {\hat x} \right| = 1,\left| {\hat y} \right| = 1,\left| {\hat z} \right| = 1
z^+x^2=1+2z^.x^+1\Rightarrow {\left| {\hat z + \hat x} \right|^2} = 1 + 2\hat z.\hat x + 1
z^+x^2=2+2z^.x^.(3)\Rightarrow {\left| {\hat z + \hat x} \right|^2} = 2 + 2\hat z.\hat x………….… (3)
Now we substitute values from equations (1), (2) and (3) in the sum of terms

x^+y^2+y^+z^2+z^+x^2=2+2x^.y^+2+2y^.z^+2+2z^.x^ x^+y^2+y^+z^2+z^+x^2=6+2x^.y^+2y^.z^+2z^.x^  \Rightarrow {\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2} = 2 + 2\hat x.\hat y + 2 + 2\hat y.\hat z + 2 + 2\hat z.\hat x \\\ \Rightarrow {\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2} = 6 + 2\hat x.\hat y + 2\hat y.\hat z + 2\hat z.\hat x \\\

Take 2 common from the last three terms
x^+y^2+y^+z^2+z^+x^2=6+2(x^.y^+y^.z^+z^.x^)..(4)\Rightarrow {\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2} = 6 + 2(\hat x.\hat y + \hat y.\hat z + \hat z.\hat x) …….. (4)
Now we know the expansion a+b+c2=a2+b2+c2+2(ab+bc+ca){\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + {\left| {\overrightarrow c } \right|^2} + 2(\overrightarrow a \overrightarrow b + \overrightarrow b \overrightarrow c + \overrightarrow c \overrightarrow a ).
Substitute the values of a=x^,b=y^,c=z^\overrightarrow a = \hat x,\overrightarrow b = \hat y,\overrightarrow c = \hat z.
x^+y^+z^2=x^2+y^2+z^2+2(x^y^+y^z^+z^x^)\Rightarrow {\left| {\hat x + \hat y + \hat z} \right|^2} = {\left| {\hat x} \right|^2} + {\left| {\hat y} \right|^2} + {\left| {\hat z} \right|^2} + 2(\hat x\hat y + \hat y\hat z + \hat z\hat x)
Substitute the values of x^=1,y^=1,z^=1\left| {\hat x} \right| = 1,\left| {\hat y} \right| = 1,\left| {\hat z} \right| = 1

x^+y^+z^2=1+1+1+2(x^y^+y^z^+z^x^) x^+y^+z^2=3+2(x^y^+y^z^+z^x^)  \Rightarrow {\left| {\hat x + \hat y + \hat z} \right|^2} = 1 + 1 + 1 + 2(\hat x\hat y + \hat y\hat z + \hat z\hat x) \\\ \Rightarrow {\left| {\hat x + \hat y + \hat z} \right|^2} = 3 + 2(\hat x\hat y + \hat y\hat z + \hat z\hat x) \\\

We can see that x^+y^+z^2>0{\left| {\hat x + \hat y + \hat z} \right|^2} > 0 as the terms on RHS are adding.
3+2(x^y^+y^z^+z^x^)>0\therefore 3 + 2(\hat x\hat y + \hat y\hat z + \hat z\hat x) > 0
Shifting the value of constant to one side of the equation we get
2(x^y^+y^z^+z^x^)>3.(5)\Rightarrow 2(\hat x\hat y + \hat y\hat z + \hat z\hat x) > - 3…………. (5)
Therefore we can use equation (5) in equation (4)
x^+y^2+y^+z^2+z^+x^2=6+2(x^.y^+y^.z^+z^.x^)\Rightarrow {\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2} = 6 + 2(\hat x.\hat y + \hat y.\hat z + \hat z.\hat x)
Substitute 2(x^y^+y^z^+z^x^)>3 \Rightarrow 2(\hat x\hat y + \hat y\hat z + \hat z\hat x) > - 3

x^+y^2+y^+z^2+z^+x^2>6+(3) x^+y^2+y^+z^2+z^+x^2>3  \Rightarrow {\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2} > 6 + ( - 3) \\\ \Rightarrow {\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2} > 3 \\\

Therefore the minimum value of x^+y^2+y^+z^2+z^+x^2{\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2} is 3.

So, the correct answer is “Option B”.

Note: Students many times make mistake of writing the vectors multiplied in the bracket 2(x^y^+y^z^+z^x^)2(\hat x\hat y + \hat y\hat z + \hat z\hat x) as 2(1+1+1)=2×3=62(1 + 1 + 1) = 2 \times 3 = 6 which is wrong because we don’t know the direction of the vectors and direction plays very important role in vectors.