Question
Question: If x, y and z are non-zero real numbers, then the inverse of the matrix \(A = \left( {\begin{array}{...
If x, y and z are non-zero real numbers, then the inverse of the matrix A = \left( {\begin{array}{*{20}{c}}
x&0&0 \\\
0&y;&0 \\\
0&0&z;
\end{array}} \right) is
A. \left( {\begin{array}{*{20}{c}}
{{x^{ - 1}}}&0&0 \\\
0&{{y^{ - 1}}}&0 \\\
0&0&{{z^{ - 1}}}
\end{array}} \right)
B. xyz\left( {\begin{array}{*{20}{c}}
{{x^{ - 1}}}&0&0 \\\
0&{{y^{ - 1}}}&0 \\\
0&0&{{z^{ - 1}}}
\end{array}} \right)
C. \dfrac{1}{{xyz}}\left( {\begin{array}{*{20}{c}}
x&0&0 \\\
0&y;&0 \\\
0&0&z;
\end{array}} \right)
D. \dfrac{1}{{xyz}}\left( {\begin{array}{*{20}{c}}
1&0&0 \\\
0&1&0 \\\
0&0&1
\end{array}} \right)
Solution
To solve this question, we have to remember that the inverse of matrix A is given by, A−1=∣A∣1adj.A, where adj. A denotes the adjoint of matrix A and ∣A∣ is the determinant of A.
Complete step-by-step answer:
We have,
\Rightarrow A = \left( {\begin{array}{*{20}{c}}
x&0&0 \\\
0&y;&0 \\\
0&0&z;
\end{array}} \right)
We know that, for A to be invertible, ∣A∣=0
So, first we will find ∣A∣
⇒x(yz−0)−0−0
⇒∣A∣=xyz
We can see that ∣A∣=0, hence, A is invertible.
Now, we will find the adj. A.
In order to find the adj. A, we have to find the cofactor matrix of A.
We know that,
Cofactor, Cijof aij in A = [aij]n×n is equal to (−1)i+jMij
Where Mij is the minor.
So,
Cofactor of a11 = \left| {\begin{array}{*{20}{c}}
y&0 \\\
0&z;
\end{array}} \right| = yz
Cofactor of a12 = \left| {\begin{array}{*{20}{c}}
0&0 \\\
0&z;
\end{array}} \right| = 0
Cofactor of a13 = \left| {\begin{array}{*{20}{c}}
0&y; \\\
0&0
\end{array}} \right| = 0
Cofactor of a21 = \left| {\begin{array}{*{20}{c}}
0&0 \\\
0&z;
\end{array}} \right| = 0
Cofactor of a22 = \left| {\begin{array}{*{20}{c}}
x&0 \\\
0&z;
\end{array}} \right| = xz
Cofactor of a23 = \left| {\begin{array}{*{20}{c}}
x&0 \\\
0&0
\end{array}} \right| = 0
Cofactor of a31 = \left| {\begin{array}{*{20}{c}}
0&0 \\\
y&0
\end{array}} \right| = 0
Cofactor of a32 = \left| {\begin{array}{*{20}{c}}
x&0 \\\
0&0
\end{array}} \right| = 0
Cofactor of a33 = \left| {\begin{array}{*{20}{c}}
x&0 \\\
0&y;
\end{array}} \right| = xy
Therefore, the cofactor matrix of A is \left( {\begin{array}{*{20}{c}}
{yz}&0&0 \\\
0&{xz}&0 \\\
0&0&{xy}
\end{array}} \right)
Now, the adj. A is the transpose of the cofactor matrix of A.
Therefore,