Solveeit Logo

Question

Question: If \( x,y \) and \( z \) are in A.P, then \[\dfrac{{\sin x - \sin z}}{{\cos z - \cos x}}\]is equal t...

If x,yx,y and zz are in A.P, then sinxsinzcoszcosx\dfrac{{\sin x - \sin z}}{{\cos z - \cos x}}is equal to
A. tany\tan y
B. coty\cot y
C. siny\sin y
D. cosy\cos y

Explanation

Solution

Hint : Arithmetic Progression, A.P. is a progression where the difference between any two consecutive terms is constant. i.e. anan1=d{a_n} - {a_{n - 1}} = d

Complete step-by-step answer :
It is given in the question that
x,yx,y and zz are in A.P.
Then by the definition of A.P. we can write
yx=zyy - x = z - y
Re-arranging it, we get
2y=x+z2y = x + z
y=z+x2\Rightarrow y = \dfrac{{z + x}}{2} . . . . . (1)
Now,
sinxsinzcoszcosx=2sin(xz2).cos(x+z2)2sin(xz2)sin(x+z2)\dfrac{{\sin x - \sin z}}{{\cos z - \cos x}} = \dfrac{{2\sin \left( {\dfrac{{x - z}}{2}} \right).\cos \left( {\dfrac{{x + z}}{2}} \right)}}{{2\sin \left( {\dfrac{{x - z}}{2}} \right)\sin \left( {\dfrac{{x + z}}{2}} \right)}}
(sinAsinB=2sin(AB2)cos(A+B2))\left( {\because \sin A - \sin B = 2\sin \left( {\dfrac{{A - B}}{2}} \right)\cos \left( {\dfrac{{A + B}}{2}} \right)} \right)
(cosAcosB=2sin(BA2)sin(B+A2))\left( {\because \cos A - \cos B = 2\sin \left( {\dfrac{{B - A}}{2}} \right)\sin \left( {\dfrac{{B + A}}{2}} \right)} \right)
By cancelling the common terms in numerator and denominator, we get
sinxsinzcoszcosx=cos(x+z2)sin(x+z2)\dfrac{{\sin x - \sin z}}{{\cos z - \cos x}} = \dfrac{{\cos \left( {\dfrac{{x + z}}{2}} \right)}}{{\sin \left( {\dfrac{{x + z}}{2}} \right)}}
sinxsinzcoszcosx=cosysiny\Rightarrow \dfrac{{\sin x - \sin z}}{{\cos z - \cos x}} = \dfrac{{\cos y}}{{\sin y}} (From equation (1))
sinxsinzcoszcosx=coty\Rightarrow \dfrac{{\sin x - \sin z}}{{\cos z - \cos x}} = \cot y (cosysiny=coty)\left( {\because \dfrac{{\cos y}}{{\sin y}} = \cot y} \right)
Hence, the value of sinxsinzcoszcosx\dfrac{{\sin x - \sin z}}{{\cos z - \cos x}} is equal to coty.\cot y.
Therefore, from the above discussion, the correct option is (B) coty\cot y

So, the correct answer is “Option B”.

Note : You should be careful while using the formula of cosAcosB\cos A - \cos B because in every other formula of this type, you get the term ABA - B to the RHS. But for this particular case, it is BAB - A. Also remember that cos(-x)=cosx.