Solveeit Logo

Question

Question: If \(x+y=3{{e}^{2}}\) then \(\dfrac{d\left( {{x}^{y}} \right)}{dx}=0\) for \(x=\) ? A. \(e\) B...

If x+y=3e2x+y=3{{e}^{2}} then d(xy)dx=0\dfrac{d\left( {{x}^{y}} \right)}{dx}=0 for x=x= ?
A. ee
B. e2{{e}^{2}}
C. ee{{e}^{e}}
D. 2e22{{e}^{2}}

Explanation

Solution

We will take a variable and equate it with xy{{x}^{y}} then we will take log on both sides and then we will differentiate it with respect to xx . We will gain the value of dydx\dfrac{dy}{dx} by differentiating the equation given in the question that is x+y=3e2x+y=3{{e}^{2}} and then again put it back in the obtained equation earlier and then equate it to 0.0. Finally, we will see from the options and see which option satisfies the equation.

Complete step by step answer:
Let’s assume that xy=t{{x}^{y}}=t , now we will take logarithm on both sides that is log(xy)=logt\log \left( {{x}^{y}} \right)=\log t . Now, we know that according to the property of logarithm: logf(x)n=nlogf(x)\log f{{\left( x \right)}^{n}}=n\log f\left( x \right) ,
Therefore: ylogx=logtylnx=lnty\log x=\log t\Rightarrow y\ln x=\ln t ,
We know that: d(f(x).g(x))dx=f(x)g(x)+g(x)f(x)\dfrac{d\left( f\left( x \right).g\left( x \right) \right)}{dx}=f'\left( x \right)g\left( x \right)+g'\left( x \right)f\left( x \right) and d(logf(x))dx=1f(x).f(x)\dfrac{d\left( \log f\left( x \right) \right)}{dx}=\dfrac{1}{f\left( x \right)}.f'\left( x \right)
We have the equation: ylnx=lnty\ln x=\ln t, we will now differentiate this equation with respect to xx:
yx+lnx.dydx=1tdtdx\dfrac{y}{x}+\ln x.\dfrac{dy}{dx}=\dfrac{1}{t}\dfrac{dt}{dx} ,
Now let’s take tt from the right hand side to the left hand side:
t(yx+lnxdydx)=dtdx ..........Equation 1t\left( \dfrac{y}{x}+\ln x\dfrac{dy}{dx} \right)=\dfrac{dt}{dx}\text{ }..........\text{Equation 1}

Now, it is given that x+y=3e2x+y=3{{e}^{2}} , let’s differentiate this equation with respect to xx:
1+dydx=0dydx=11+\dfrac{dy}{dx}=0\Rightarrow \dfrac{dy}{dx}=-1 , we will put this value of dydx\dfrac{dy}{dx} in equation 1:
t(yx+lnxdydx)=dtdx t(yx+lnx(1))=dtdxt(yxlnx)=dtdx ........ Equation 2.t\left( \dfrac{y}{x}+\ln x\dfrac{dy}{dx} \right)=\dfrac{dt}{dx}\text{ }\Rightarrow t\left( \dfrac{y}{x}+\ln x\left( -1 \right) \right)=\dfrac{dt}{dx}\Rightarrow t\left( \dfrac{y}{x}-\ln x \right)=\dfrac{dt}{dx}\text{ }........\text{ Equation 2}\text{.}
We know that xy=t{{x}^{y}}=t ,
And it is given that dtdx=d(xy)dx=0\dfrac{dt}{dx}=\dfrac{d\left( {{x}^{y}} \right)}{dx}=0 , we will put this value in equation 2, therefore: t(yxlnx)=dtdx=0t(yxlnx)=0t\left( \dfrac{y}{x}-\ln x \right)=\dfrac{dt}{dx}=0\Rightarrow t\left( y-x\ln x \right)=0
Now, either t=0 or yxlnx=0t=0\text{ or }y-x\ln x=0 , since tt or xy{{x}^{y}} is a non-zero term for given values therefore,
yxlnx=0y=xlnxy-x\ln x=0\Rightarrow y=x\ln x , we will now put this value in x+y=3e2x+y=3{{e}^{2}} , we will get: x+xlnx=3e2x(1+lnx)=3e2 ...........Equation 3.x+x\ln x=3{{e}^{2}}\Rightarrow x\left( 1+\ln x \right)=3{{e}^{2}}\text{ }...........\text{Equation 3}\text{.}
We will now put and check the values of xx from the options and we will find out that x=e2x={{e}^{2}} will satisfy equation 3.

Hence, the correct option is B.

Note:
Students might make the mistake while differentiating as there are many properties used in it and we should be careful while applying them. Remember that we said tt or xy{{x}^{y}} to be non zero because it is given in the question that d(xy)dx=0\dfrac{d\left( {{x}^{y}} \right)}{dx}=0 , which implies that xy{{x}^{y}} must be some constant.