Solveeit Logo

Question

Mathematics Question on Differentiability

If x+ | y |= 2y , then y as a function of x is

A

defined for all real x

B

continuous at x = 0

C

differentiable for all x

D

such that dydx=13\frac{dy}{dx} = \frac{1}{3} for x<0x < 0

Answer

such that dydx=13\frac{dy}{dx} = \frac{1}{3} for x<0x < 0

Explanation

Solution

Given that x+y=2yx + | y | = 2y
If y<0y < 0 then xy=2yx - y = 2y
 y=x/3  x<0\Rightarrow \ y = x/3 \ \Rightarrow \ x < 0
If y = 0 then x = 0. If y > 0 then x + y = 2y \Rightarrow y=xy = x \Rightarrow x>0x > 0

Thus we can define f (x) = y = {x/3x<0 xx0\begin{cases} x/3 & x < 0 \\\ x & x \ge 0 \end{cases}
Continuity at x = 0
LL=limh0f(0h)=limh0(h/3)=0L L = \displaystyle \lim_{h \to 0} f\left(0-h\right) =\displaystyle \lim_{h \to 0} \left(-h /3\right) = 0
RL=limh0f(0+h)=limh0h=0R L = \displaystyle \lim_{h \to 0 } f\left(0+h\right) =\displaystyle \lim_{h \to 0} h = 0
f(0)=0f\left(0\right) = 0
As LL=RL=f(0)LL = RL = f\left(0\right)
f(x)\therefore f\left(x\right) is continuous at x=0x = 0
Differentiability at x = 0
Lf=1/3;Rf=1Lf ' = 1/3 ; Rf' = 1
As LfRff(x)Lf' \neq Rf' \Rightarrow f(x) is not differentiable at x = 0
But for x<0,dydx=13.x < 0 , \frac{dy}{dx} = \frac{1}{3}.