Solveeit Logo

Question

Question: If \(x + y = 1,xy = 2\) then \({\tan ^{ - 1}}x + {\tan ^{ - 1}}y = \) A) \(\dfrac{\pi }{4}\) B) ...

If x+y=1,xy=2x + y = 1,xy = 2 then tan1x+tan1y={\tan ^{ - 1}}x + {\tan ^{ - 1}}y =
A) π4\dfrac{\pi }{4}
B) 3π4\dfrac{{3\pi }}{4}
C) 3π2\dfrac{{3\pi }}{2}
D) π2\dfrac{\pi }{2}

Explanation

Solution

Apply the inverse formula tan1A+tan1B=nπ+tan1A+B1AB{\tan ^{ - 1}}A + {\tan ^{ - 1}}B = n\pi + {\tan ^{ - 1}}\dfrac{{A + B}}{{1 - AB}}, where n is a suitably chosen integer. After that substitute the values in the formula and simplify the term. Then replace the value in terms of tan. After that cancel out tan1{\tan ^{ - 1}} and tan\tan to get the desired result.

Complete step-by-step answer:
The inverse trigonometric functions perform the opposite operation of the trigonometric functions such as sine, cosine, tangent, cosecant, secant, and cotangent. We know that trig functions are especially applicable to the right-angle triangle. These six important functions are used to find the angle measure in the right triangle when two sides of the triangle measures are known.
The convention symbol to represent the inverse trigonometric function using arc-prefix like arcsin(x), arccos(x), arctan(x), arccsc(x), arcsec(x), arccot(x).
We know that,
tan1A+tan1B=nπ+tan1A+B1AB{\tan ^{ - 1}}A + {\tan ^{ - 1}}B = n\pi + {\tan ^{ - 1}}\dfrac{{A + B}}{{1 - AB}}
Substitute A=xA = x and B=yB = y in the formula,
tan1x+tan1y=nπ+tan1x+y1xy\Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = n\pi + {\tan ^{ - 1}}\dfrac{{x + y}}{{1 - xy}}
Substitute the values,
tan1x+tan1y=nπ+tan1112\Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = n\pi + {\tan ^{ - 1}}\dfrac{1}{{1 - 2}}
Subtract the terms in the denominator,
tan1x+tan1y=nπ+tan111\Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = n\pi + {\tan ^{ - 1}}\dfrac{1}{{ - 1}}
Simplify the terms,
tan1x+tan1y=nπ+tan11\Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = n\pi + {\tan ^{ - 1}} - 1
We know that,
tan1(x)=tan1x{\tan ^{ - 1}}\left( { - x} \right) = - {\tan ^{ - 1}}x
Use the identity in the above equation,
tan1x+tan1y=nπtan11\Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = n\pi - {\tan ^{ - 1}}1
Substitute tanπ4\tan \dfrac{\pi }{4} in place of 1,
tan1x+tan1y=nπtan1tanπ4\Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = n\pi - {\tan ^{ - 1}}\tan \dfrac{\pi }{4}
Cancel out tan1{\tan ^{ - 1}} and tan\tan we get,
tan1x+tan1y=nππ4\Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = n\pi - \dfrac{\pi }{4}
Since the option is in interval 1st and 2nd quadrant. So, substitute the value of n equal to 1,
tan1x+tan1y=ππ4\Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = \pi - \dfrac{\pi }{4}
Take LCM on the left side,
tan1x+tan1y=4ππ4\Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = \dfrac{{4\pi - \pi }}{4}
Subtract the values in the numerator,
tan1x+tan1y=3π4\Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = \dfrac{{3\pi }}{4}

Hence, option (B) is correct.

Note: Since tanx\tan x is not a one-one function, its inverse is defined only within some intervals. The principal interval for tan1xta{n^{ - 1}}x is (π2,π2)\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right) . Whenever not explicitly mentioned, we take tan1xta{n^{ - 1}}x in the principal interval. So, we have tan1x(π2,π2)ta{n^{ - 1}}x \in \left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right) and tan1y(π2,π2)ta{n^{ - 1}}y \in \left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right). So,
tan1x+tan1x(π,π)ta{n^{ - 1}}x + ta{n^{ - 1}}x \in \left( { - \pi ,\pi } \right).
This is why we chose the value of n, so that nπ+tan1x+y1xyn\pi + {\tan ^{ - 1}}\dfrac{{x + y}}{{1 - xy}} is within the interval (π,π)\left( { - \pi ,\pi } \right). It can also be proved that unique n satisfies this property.