Question
Mathematics Question on Differential equations
If x=x(t) is the solution of the differential equation (t+1)dx=(2x+(t+1)4)dt,x(0)=2, then x(1) equals ____.
Answer
We are given the differential equation:
(t+1)dtdx=2x+(t+1)4
To solve this, divide both sides by (t+1):
dtdx=t+12x+(t+1)3
Now, separate the variables:
2xdx=t+11dt+(t+1)2dt
We can now integrate both sides:
∫2x1dx=∫(t+11+(t+1)2)dt
The left-hand side gives:
21ln∣x∣
For the right-hand side, integrate each term:
∫t+11dt=ln∣t+1∣and∫(t+1)2dt=3(t+1)3
Thus, we have:
21ln∣x∣=ln∣t+1∣+3(t+1)3+C
Exponentiate both sides:
∣x∣=e2ln∣t+1∣+32(t+1)3+2C
Simplify:
x=A(t+1)2e32(t+1)3
Now, use the initial condition x(0)=2:
x(0)=A(1)2e0=2⟹A=2
Thus, the solution is:
x=2(t+1)2e32(t+1)3
Finally, calculate x(1):
x(1)=2(1+1)2e32(2)3=2(2)2e316=2×4×e316≈14