Solveeit Logo

Question

Mathematics Question on Differential equations

If x=x(t)x = x(t) is the solution of the differential equation (t+1)dx=(2x+(t+1)4)dt,x(0)=2,(t + 1) dx = \left(2x + (t + 1)^4\right) dt, \quad x(0) = 2, then x(1)x(1) equals ____.

Answer

We are given the differential equation:

(t+1)dxdt=2x+(t+1)4(t + 1) \frac{dx}{dt} = 2x + (t + 1)^4

To solve this, divide both sides by (t+1)(t + 1):

dxdt=2xt+1+(t+1)3\frac{dx}{dt} = \frac{2x}{t + 1} + (t + 1)^3

Now, separate the variables:

dx2x=1t+1dt+(t+1)2dt\frac{dx}{2x} = \frac{1}{t + 1} dt + (t + 1)^2 dt

We can now integrate both sides:

12xdx=(1t+1+(t+1)2)dt\int \frac{1}{2x} dx = \int \left(\frac{1}{t + 1} + (t + 1)^2\right) dt

The left-hand side gives:

12lnx\frac{1}{2} \ln |x|

For the right-hand side, integrate each term:

1t+1dt=lnt+1and(t+1)2dt=(t+1)33\int \frac{1}{t + 1} dt = \ln |t + 1| \quad \text{and} \quad \int (t + 1)^2 dt = \frac{(t + 1)^3}{3}

Thus, we have:

12lnx=lnt+1+(t+1)33+C\frac{1}{2} \ln |x| = \ln |t + 1| + \frac{(t + 1)^3}{3} + C

Exponentiate both sides:

x=e2lnt+1+2(t+1)33+2C|x| = e^{2 \ln |t + 1| + \frac{2(t + 1)^3}{3} + 2C}

Simplify:

x=A(t+1)2e2(t+1)33x = A(t + 1)^2 e^{\frac{2(t + 1)^3}{3}}

Now, use the initial condition x(0)=2x(0) = 2:

x(0)=A(1)2e0=2    A=2x(0) = A(1)^2 e^0 = 2 \implies A = 2

Thus, the solution is:

x=2(t+1)2e2(t+1)33x = 2(t + 1)^2 e^{\frac{2(t + 1)^3}{3}}

Finally, calculate x(1)x(1):

x(1)=2(1+1)2e2(2)33=2(2)2e163=2×4×e16314x(1) = 2(1 + 1)^2 e^{\frac{2(2)^3}{3}} = 2(2)^2 e^{\frac{16}{3}} = 2 \times 4 \times e^{\frac{16}{3}} \approx 14