Solveeit Logo

Question

Question: If \(x\), \(v\) and \(a\) denote the displacement, the velocity and the acceleration of a particle e...

If xx, vv and aa denote the displacement, the velocity and the acceleration of a particle executing simple harmonic motion of time period TT, then, which of the following does not change with time?
(A) a2T2+4π2v2{a^2}{T^2} + 4{\pi ^2}{v^2}
(B) aTx\dfrac{{aT}}{x}
(C) aT+2πνaT + 2\pi \nu
(D) aTv\dfrac{{aT}}{v}

Explanation

Solution

To answer this question, we have to consider the sinusoidal form of all the three quantities given. Then, substituting these sinusoidal forms in each option, we have to check which one is independent of time.

Complete step by step solution:
We know that for the simple harmonic motion of a particle, the variation of the displacement, the velocity and the acceleration is sinusoidal with time.
So, we can assume the displacement as
x=Asin(ωt+θ)\Rightarrow x = A\sin \left( {\omega t + \theta } \right) …………………...(i)
We know that v=dxdtv = \dfrac{{dx}}{{dt}}
Differentiating (i) with respect to time
dxdt=d[Asin(ωt+θ)]dt\Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{{d\left[ {A\sin \left( {\omega t + \theta } \right)} \right]}}{{dt}}
This gives
v=Aωcos(ωt+φ)\Rightarrow v = A\omega \cos \left( {\omega t + \varphi } \right) …………………….(ii)
Also, a=dvdta = \dfrac{{dv}}{{dt}}
Differentiating (ii) with respect to time
dvdt=d[Aωcos(ωt+θ)]dt\Rightarrow \dfrac{{dv}}{{dt}} = \dfrac{{d\left[ {A\omega \cos \left( {\omega t + \theta } \right)} \right]}}{{dt}}
a=Aω2sin(ωt+φ)\Rightarrow a = - A{\omega ^2}\sin \left( {\omega t + \varphi } \right) …………………….(iii)
Considering the expression of option A
E=a2T2+4π2v2\Rightarrow E = {a^2}{T^2} + 4{\pi ^2}{v^2}
From (i) and (iii)
E=(Aω2sin(ωt+φ))2T2+4π2(Aωcos(ωt+φ))2\Rightarrow E = {\left( { - A{\omega ^2}\sin \left( {\omega t + \varphi } \right)} \right)^2}{T^2} + 4{\pi ^2}{\left( {A\omega \cos \left( {\omega t + \varphi } \right)} \right)^2} E=A2ω4T2sin2(ωt+φ)+4π2A2ω2cos2(ωt+φ)E = {A^2}{\omega ^4}{T^2}{\sin ^2}\left( {\omega t + \varphi } \right) + 4{\pi ^2}{A^2}{\omega ^2}{\cos ^2}\left( {\omega t + \varphi } \right)
Taking A2ω2{A^2}{\omega ^2} common, we get
E=A2ω2[ω2T2sin2(ωt+φ)+4π2cos2(ωt+φ)]\Rightarrow E = {A^2}{\omega ^2}\left[ {{\omega ^2}{T^2}{{\sin }^2}\left( {\omega t + \varphi } \right) + 4{\pi ^2}{{\cos }^2}\left( {\omega t + \varphi } \right)} \right]
Substituting ω=2πT\omega = \dfrac{{2\pi }}{T}
E=A2ω2[(2πT)2T2sin2(ωt+φ)+4π2cos2(ωt+φ)]\Rightarrow E = {A^2}{\omega ^2}\left[ {{{\left( {\dfrac{{2\pi }}{T}} \right)}^2}{T^2}{{\sin }^2}\left( {\omega t + \varphi } \right) + 4{\pi ^2}{{\cos }^2}\left( {\omega t + \varphi } \right)} \right]
E=A2ω2[4π2sin2(ωt+φ)+4π2cos2(ωt+φ)]\Rightarrow E = {A^2}{\omega ^2}\left[ {4{\pi ^2}{{\sin }^2}\left( {\omega t + \varphi } \right) + 4{\pi ^2}{{\cos }^2}\left( {\omega t + \varphi } \right)} \right]
Taking 4π24{\pi ^2}common, we get
E=4π2A2ω2[sin2(ωt+φ)+cos2(ωt+φ)]\Rightarrow E = 4{\pi ^2}{A^2}{\omega ^2}\left[ {{{\sin }^2}\left( {\omega t + \varphi } \right) + {{\cos }^2}\left( {\omega t + \varphi } \right)} \right]
We know thatsin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1
E=4π2A2ω2\Rightarrow E = 4{\pi ^2}{A^2}{\omega ^2}
As we can clearly see that this expression is independent of the time.
Hence, option A is correct.
Now, considering the expression of the option B
E=aTx\Rightarrow E = \dfrac{{aT}}{x}
From (i) and (iii)
E=[Aω2sin(ωt+φ)]TAsin(ωt+φ)\Rightarrow E = \dfrac{{\left[ { - A{\omega ^2}\sin \left( {\omega t + \varphi } \right)} \right]T}}{{A\sin \left( {\omega t + \varphi } \right)}}
E=ω2T\Rightarrow E = - {\omega ^2}T
So, this expression is also independent of the time.
Hence, option B is also correct.
Now, considering the expression of option C
E=aT+2πν\Rightarrow E = aT + 2\pi \nu
We know thatω=2πν\omega = 2\pi \nu
E=aT+ω\Rightarrow E = aT + \omega
From (iii)
E=Aω2Tsin(ωt+φ)+ω\Rightarrow E = - A{\omega ^2}T\sin \left( {\omega t + \varphi } \right) + \omega
We can see that a constant term is being added to a time dependent term, which makes the whole expression dependent on time.
Hence, option C is incorrect.
Finally, considering the expression of option D
E=aTv\Rightarrow E = \dfrac{{aT}}{v}
From (i) and (ii)
E=Aω2Tsin(ωt+φ)Aωcos(ωt+φ)\Rightarrow E = \dfrac{{ - A{\omega ^2}T\sin \left( {\omega t + \varphi } \right)}}{{A\omega \cos \left( {\omega t + \varphi } \right)}}
E=ωTsin(ωt+φ)cos(ωt+φ)\Rightarrow E = \dfrac{{ - \omega T\sin \left( {\omega t + \varphi } \right)}}{{\cos \left( {\omega t + \varphi } \right)}}
We know that sinθcosθ=tanθ\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta . So we have
E=ωTtan(ωt+φ)\Rightarrow E = - \omega T\tan \left( {\omega t + \varphi } \right)
So, this expression again comes out to be time dependent.
Hence, option D is also incorrect.
Option (A) and (B) are correct.

Note:
Instead of writing the complex sinusoidal equations for the three quantities discussed in the question, we can also directly use the relationship between these three quantities in SHM. The relationship is given as below
v=ωA2x2\Rightarrow v = \omega \sqrt {{A^2} - {x^2}} and
a=ω2x\Rightarrow a = - {\omega ^2}x
Using this relationship, we can reduce our efforts and time.