Solveeit Logo

Question

Question: If \(x = \)\[\tan \dfrac{\pi }{{18}}\] then \[3x_{}^6 - 27x_{}^4 + 33x_{}^2\] equals to- A. \[1\] ...

If x = $$$\tan \dfrac{\pi }{{18}}$$ then $$3x_{}^6 - 27x_{}^4 + 33x_{}^2$$ equals to- A. $$1$$ B. 2C. C.3\sqrt 3 D. D.\dfrac{1}{3}$

Explanation

Solution

First we can solve the question by applying the formula.
We need to substitute the given value of xx in the formula
Finally we get the required solution.

Formula used: tan3θ=3tanθtan3θ13tan2θ\tan 3\theta = \dfrac{{3\tan \theta - \tan _{}^3\theta }}{{1 - 3\tan _{}^2\theta }}

Complete step-by-step answer:
It is given that the value x=tanπ18x = \tan \dfrac{\pi }{{18}}
Let us considered θ=x\theta = x
Substitute the above in the formula and we can write tan3x=3tanxtan3x13tan2x....(1)\tan 3x = \dfrac{{3\tan x - \tan _{}^3x}}{{1 - 3\tan _{}^2x}}....\left( 1 \right)
Putting the value of x=tan(π18)x = \tan \left( {\dfrac{\pi }{{18}}} \right) in equation (1)\left( 1 \right) we get
tan(3.π18)=3tan(π18)tan3(π18)13tan2(π18)\tan \left( {3.\dfrac{\pi }{{18}}} \right) = \dfrac{{3\tan \left( {\dfrac{\pi }{{18}}} \right) - \tan _{}^3\left( {\dfrac{\pi }{{18}}} \right)}}{{1 - 3\tan _{}^2\left( {\dfrac{\pi }{{18}}} \right)}}
Now in left side, if we look we can simplify, tan(3π18)=tan(π6)\tan \left( {\dfrac{{3\pi }}{{18}}} \right) = \tan \left( {\dfrac{\pi }{6}} \right)
tan(π6)=3tan(π18)tan3(π18)13tan2(π18)\tan \left( {\dfrac{\pi }{6}} \right) = \dfrac{{3\tan \left( {\dfrac{\pi }{{18}}} \right) - \tan _{}^3\left( {\dfrac{\pi }{{18}}} \right)}}{{1 - 3\tan _{}^2\left( {\dfrac{\pi }{{18}}} \right)}}
Here π=180\pi = {180^ \circ } and we can simplify it,
Putting the value of tan(π6)\tan \left( {\dfrac{\pi }{6}} \right) =tan30 = \tan {30^ \circ } =13 = \dfrac{1}{{\sqrt 3 }} in the equation we get-
13=3tan(π18)tan3(π18)13tan2(π18)\dfrac{1}{{\sqrt 3 }} = \dfrac{{3\tan \left( {\dfrac{\pi }{{18}}} \right) - \tan _{}^3\left( {\dfrac{\pi }{{18}}} \right)}}{{1 - 3\tan _{}^2\left( {\dfrac{\pi }{{18}}} \right)}}
Now, we can squaring on both the sides we get
(13)2=[3tan(π18)tan3(π18)13tan2(π18)]2\left( {\dfrac{1}{{\sqrt 3 }}} \right)_{}^2 = \left[ {\dfrac{{3\tan \left( {\dfrac{\pi }{{18}}} \right) - \tan _{}^3\left( {\dfrac{\pi }{{18}}} \right)}}{{1 - 3\tan _{}^2\left( {\dfrac{\pi }{{18}}} \right)}}} \right]_{}^2
After squaring both the sides we get 13\dfrac{1}{3} on the left side
Also we need to apply the formula of (ab)2=a2+b22ab(a - b)_{}^2 = a_{}^2 + b_{}^2 - 2ab on both the numerator and denominator of the right side we can write it as,
13=9tan2(π18)+tan6(π18)6tan4(π18)1+9tan4(π18)6tan2(π18)\dfrac{1}{3} = \dfrac{{9\tan _{}^2\left( {\dfrac{\pi }{{18}}} \right) + \tan _{}^6\left( {\dfrac{\pi }{{18}}} \right) - 6\tan _{}^4\left( {\dfrac{\pi }{{18}}} \right)}}{{1 + 9\tan _{}^4\left( {\dfrac{\pi }{{18}}} \right) - 6\tan _{}^2\left( {\dfrac{\pi }{{18}}} \right)}}
Now we can take the above step in to cross multiplication on both the sides for getting the easy simplification
1+9tan4(π18)6tan2(π18)=27tan2(π18)+3tan6(π18)18tan4(π18)1 + 9\tan _{}^4\left( {\dfrac{\pi }{{18}}} \right) - 6\tan _{}^2\left( {\dfrac{\pi }{{18}}} \right) = 27\tan _{}^2\left( {\dfrac{\pi }{{18}}} \right) + 3\tan _{}^6\left( {\dfrac{\pi }{{18}}} \right) - 18\tan _{}^4\left( {\dfrac{\pi }{{18}}} \right)
We can add and subtracting the above terms in the form of equating itself, and 11 take it as RHS
3tan6(π18)27tan4(π18)+33tan2(π18)=13\tan _{}^6\left( {\dfrac{\pi }{{18}}} \right) - 27\tan _{}^4\left( {\dfrac{\pi }{{18}}} \right) + 33\tan _{}^2\left( {\dfrac{\pi }{{18}}} \right) = 1
As mentioned above we have to take the given value x=tanπ18x = \tan \dfrac{\pi }{{18}},
So we can write it as,
Thus the value of 3x627x4+33x23x_{}^6 - 27x_{}^4 + 33x_{}^2 is 11

Note: There are two ways of solving this question. One is by applying the formula of tan3θ=3tanθtan3θ13tan2θ\tan 3\theta = \dfrac{{3\tan \theta - \tan _{}^3\theta }}{{1 - 3\tan _{}^2\theta }} and another is finding out the value of tanπ18\tan \dfrac{\pi }{{18}} and substituting it’s value in 3x627x4+33x23x_{}^6 - 27x_{}^4 + 33x_{}^2.
Both are correct but you should choose one which is suitable for you.
But it is an easy way to solve this question.
It must be kept in mind for solving the question of trigonometry you must know all the formulas related to it.