Solveeit Logo

Question

Question: If \(x = \tan {15^ \circ }\) , \(y = \cos ec{75^ \circ }\) and \(z = 4\sin {18^ \circ }\) A. \(x ...

If x=tan15x = \tan {15^ \circ } , y=cosec75y = \cos ec{75^ \circ } and z=4sin18z = 4\sin {18^ \circ }
A. x<y<zx < y < z
B. y<z<xy < z < x
C. z<x<yz < x < y
D. x<z<yx < z < y

Explanation

Solution

First, we will try to split the internal angles of trigonometric ratios given. For tan15 we can split the angle as tan(60-45) and then solve it. For cosec75, first, we will convert it into sine and after that, we will split the internal angle as (45+30)\left( {45 + 30} \right) to solve it. We can find the value of sin18\sin 18 by assuming A=18A = 18
To get 5A=905A = 90 . We can see this as 2A=903A2A = 90 - 3A , then we will multiply sin to both sides and solve it to evaluate sin18. After that, we can compare the three terms given in the question to get to the final answer.

Complete step by step solution:
Let us take the terms one by one,
x=tan15x = \tan {15^ \circ }

Put 15 as 60-45, we get
tan15=tan(6045)\Rightarrow \tan {15^ \circ } = \tan {(60 - 45)^ \circ } … (1)

We know that,
tan(AB)=tanAtanB1+tanA×tanB\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A \times \tan B}} … (2)

Using (2) in (1), we get

tan(6045)=tan60tan451+tan60×tan45 \Rightarrow \tan (60 - 45) = \dfrac{{\tan 60 - \tan 45}}{{1 + \tan 60 \times \tan 45}} … (3)

Put tan60=3\tan {60^ \circ } = \sqrt 3 and tan45=1\tan {45^ \circ } = 1 in (3), we get
tan15=311+3\Rightarrow \tan {15^ \circ } = \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 }}

Hence,
x=311+3\Rightarrow x = \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 }}
We know that 3=1.732\sqrt 3 = 1.732
x=1.73211+3\Rightarrow x = \dfrac{{1.732 - 1}}{{1 + \sqrt 3 }}
x=0.7321+3\Rightarrow x = \dfrac{{0.732}}{{1 + \sqrt 3 }} … (4)

Now,
y=cosec75\Rightarrow y = \cos ec{75^ \circ } … (5)

We know that
cosecx=1sinx\cos ecx = \dfrac{1}{{\sin x}} … (6)

Using (6) in (5), we get
cosec75=1sin75\Rightarrow \cos ec{75^ \circ } = \dfrac{1}{{\sin {{75}^ \circ }}}

Put 75 as 45+30, we get
1sin75=1sin(45+30)\Rightarrow \dfrac{1}{{\sin {{75}^ \circ }}} = \dfrac{1}{{\sin {{(45 + 30)}^ \circ }}} … (7)

We know that,
sin(x+y)=(sinx×cosy)+(cosx×siny)\sin (x + y) = (\sin x \times \cos y) + (\cos x \times \sin y) … (8)

Using (8) in (7), we get
1sin(45+30)=1sin45cos30+cos45sin30\Rightarrow \dfrac{1}{{\sin {{(45 + 30)}^ \circ }}} = \dfrac{1}{{\sin {{45}^ \circ }\cos {{30}^ \circ } + \cos {{45}^ \circ }\sin {{30}^ \circ }}}

Put sin45=12\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }} , sin30=12\sin {30^ \circ } = \dfrac{1}{2} , cos45=12\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }} and cos30=32\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2} , we get
1sin(45+30)=1(12×32)+(12×12)\Rightarrow \dfrac{1}{{\sin {{(45 + 30)}^ \circ }}} = \dfrac{1}{{\left( {\dfrac{1}{{\sqrt 2 }} \times \dfrac{{\sqrt 3 }}{2}} \right) + \left( {\dfrac{1}{{\sqrt 2 }} \times \dfrac{1}{2}} \right)}}

Hence, after simplification, it will evaluate to
cosec75=1sin75=221+3\Rightarrow \cos ec{75^ \circ } = \dfrac{1}{{\sin {{75}^ \circ }}} = \dfrac{{2\sqrt 2 }}{{1 + \sqrt 3 }}

Hence,
y=221+3\Rightarrow y = \dfrac{{2\sqrt 2 }}{{1 + \sqrt 3 }}
We know that 2=1.414\sqrt 2 = 1.414
y=2×1.4141+3\Rightarrow y = \dfrac{{2 \times 1.414}}{{1 + \sqrt 3 }}
y=2.8281+3\Rightarrow y = \dfrac{{2.828}}{{1 + \sqrt 3 }} … (9)

Now,
z=4sin18\Rightarrow z = 4\sin {18^ \circ }

Let, A=18A = {18^ \circ }
5×A=5×18\Rightarrow 5 \times A = 5 \times {18^ \circ }
2×A=903×A\Rightarrow 2 \times A = {90^ \circ } - 3 \times A

Now put sin on both sides, we get
sin2A=sin(903A)\Rightarrow \sin 2A = \sin ({90^ \circ } - 3A)

Since, sin(90θ)=cosθ\sin (90 - \theta ) = \cos \theta
sin2A=cos3A\Rightarrow \sin 2A = \cos 3A … (10)

We know that,
sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta … (11)
cos2θ=4cos3θ3cosθ\cos 2\theta = 4{\cos ^3}\theta - 3\cos \theta … (12)
cos2θ=1sin2θ{\cos ^2}\theta = 1 - {\sin ^2}\theta … (13)

Using (11) and (12) in (10), we get
2sinAcosA=4cos3A3cosA\Rightarrow 2\sin A\cos A = 4{\cos ^3}A - 3\cos A

Canceling out cosA\cos A form both sides, we get
2sinA=4cos2A3\Rightarrow 2\sin A = 4{\cos ^2}A - 3

Using (13), we get
2sinA=44sin2A3\Rightarrow 2\sin A = 4 - 4{\sin ^2}A - 3

Forming the quadratic equation, we get
4sin2A+2sinA1=0\Rightarrow 4{\sin ^2}A + 2\sin A - 1 = 0
Let sinA=t\sin A = t , we get
4t2+2t1=0\Rightarrow 4{t^2} + 2t - 1 = 0

This equation can be solved by using a quadratic formula which states that,
If a quadratic equation is given as ax2+bx+c=0a{x^2} + bx + c = 0 then the solutions for x are given by
x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}

Now, solving the above equation using the quadratic formula, we get
t=2±258\Rightarrow t = \dfrac{{ - 2 \pm 2\sqrt 5 }}{8}

Taking 2 common, we get
t=1±154\Rightarrow t = \dfrac{{ - 1 \pm 1\sqrt 5 }}{4}

Since, sin18\sin {18^ \circ } fall in the first quadrant hence, sin18\sin {18^ \circ } can not be negative, therefore
t1154\Rightarrow t \ne \dfrac{{ - 1 - 1\sqrt 5 }}{4}
Hence, one option is eliminated. Therefore, we get
t=1+154\Rightarrow t = \dfrac{{ - 1 + 1\sqrt 5 }}{4}
Since t=sinAt = \sin A and A=18A = 18 , we get
sin18=1+54\Rightarrow \sin {18^ \circ } = \dfrac{{ - 1 + \sqrt 5 }}{4} … (14)

we are given z=4sin18z = 4\sin {18^ \circ } , hence
z=4(1+5)4\Rightarrow z = 4\dfrac{{( - 1 + \sqrt 5 )}}{4}
z=1+5\Rightarrow z = - 1 + \sqrt 5
Multiplying and dividing RHS by 1+31 + \sqrt 3 , we get
z=(1+5)×(1+3)1+3\Rightarrow z = \dfrac{{( - 1 + \sqrt 5 ) \times (1 + \sqrt 3 )}}{{1 + \sqrt 3 }}
z=153+511+3\Rightarrow z = \dfrac{{\sqrt {15} - \sqrt 3 + \sqrt 5 - 1}}{{1 + \sqrt 3 }} … (15)
We know that, 153.87\sqrt {15} \approx 3.87 , 52.23\sqrt 5 \approx 2.23 , 31.73\sqrt 3 \approx 1.73
Hence, put the values in (15), we get
z=3.871.73+2.2311+3\Rightarrow z = \dfrac{{3.87 - 1.73 + 2.23 - 1}}{{1 + \sqrt 3 }}
z=3.371+3\Rightarrow z = \dfrac{{3.37}}{{1 + \sqrt 3 }} … (16)

Now, by comparing (4),(9), and (16), Since, denominators at RHS are the same, we can say that
0.7321+3<2.8281+3<3.371+3\Rightarrow \dfrac{{0.732}}{{1 + \sqrt 3 }} < \dfrac{{2.828}}{{1 + \sqrt 3 }} < \dfrac{{3.37}}{{1 + \sqrt 3 }} … (17)

Hence, from (17), it is clear that
x<y<z\Rightarrow x < y < z

Hence, the final answer is A.

Note:
It is not advisable to derive each small step in question during the paper, in the above question we should remember the value of trigonometric ratio sin18\sin 18 . Similarly, there are some more angles which should be remembered
(1) sin36=10254\sin {36^ \circ } = \dfrac{{\sqrt {10 - 2\sqrt 5 } }}{4}
(2) sin54=5+14\sin {54^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}
(3) sin72=10+254\sin {72^ \circ } = \dfrac{{\sqrt {10 + 2\sqrt 5 } }}{4}