Solveeit Logo

Question

Question: If $x + \sqrt[4]{5-x^4} = 2$, then find $x\sqrt[4]{5-x^4} = ?$ (x is a real Number)...

If x+5x44=2x + \sqrt[4]{5-x^4} = 2, then find x5x44=?x\sqrt[4]{5-x^4} = ? (x is a real Number)

A

8+422\frac{8 + \sqrt{42}}{2}

B

8422\frac{8 - \sqrt{42}}{2}

C

8+1684\frac{8 + \sqrt{168}}{4}

D

81684\frac{8 - \sqrt{168}}{4}

Answer

8422\frac{8 - \sqrt{42}}{2}

Explanation

Solution

Let the given equation be x+5x44=2x + \sqrt[4]{5-x^4} = 2. Let y=5x44y = \sqrt[4]{5-x^4}. From this definition, we must have y0y \ge 0 and 5x405-x^4 \ge 0. The equation becomes: x+y=2x + y = 2

Also, raising y=5x44y = \sqrt[4]{5-x^4} to the fourth power gives: y4=5x4y^4 = 5-x^4 x4+y4=5x^4 + y^4 = 5

We have a system of two equations with xx and yy:

  1. x+y=2x + y = 2
  2. x4+y4=5x^4 + y^4 = 5

We want to find the value of x5x44x\sqrt[4]{5-x^4}, which is xyxy. We can express x4+y4x^4+y^4 in terms of x+yx+y and xyxy. First, x2+y2=(x+y)22xy=(2)22xy=42xyx^2 + y^2 = (x+y)^2 - 2xy = (2)^2 - 2xy = 4 - 2xy. Then, x4+y4=(x2+y2)22(xy)2=(42xy)22(xy)2x^4 + y^4 = (x^2+y^2)^2 - 2(xy)^2 = (4-2xy)^2 - 2(xy)^2.

Substitute this into equation (2): 5=(42xy)22(xy)25 = (4-2xy)^2 - 2(xy)^2 5=(1616xy+4(xy)2)2(xy)25 = (16 - 16xy + 4(xy)^2) - 2(xy)^2 5=1616xy+2(xy)25 = 16 - 16xy + 2(xy)^2

Rearranging this into a quadratic equation for xyxy: 2(xy)216xy+165=02(xy)^2 - 16xy + 16 - 5 = 0 2(xy)216xy+11=02(xy)^2 - 16xy + 11 = 0

Let P=xyP = xy. The quadratic equation is 2P216P+11=02P^2 - 16P + 11 = 0. Using the quadratic formula to solve for PP: P=(16)±(16)24(2)(11)2(2)P = \frac{-(-16) \pm \sqrt{(-16)^2 - 4(2)(11)}}{2(2)} P=16±256884P = \frac{16 \pm \sqrt{256 - 88}}{4} P=16±1684P = \frac{16 \pm \sqrt{168}}{4} P=16±4×424P = \frac{16 \pm \sqrt{4 \times 42}}{4} P=16±2424P = \frac{16 \pm 2\sqrt{42}}{4} P=8±422P = \frac{8 \pm \sqrt{42}}{2}

So, xyxy can be 8+422\frac{8 + \sqrt{42}}{2} or 8422\frac{8 - \sqrt{42}}{2}.

Now we must consider the constraints that xx and yy must be real numbers, and y0y \ge 0. xx and yy are the roots of the quadratic equation t2(x+y)t+xy=0t^2 - (x+y)t + xy = 0, which is t22t+P=0t^2 - 2t + P = 0. For xx and yy to be real, the discriminant of this quadratic must be non-negative: D=(2)24(1)(P)=44P0D = (-2)^2 - 4(1)(P) = 4 - 4P \ge 0 44P    P14 \ge 4P \implies P \le 1.

Let's check the two possible values for PP:

  1. P1=8+422P_1 = \frac{8 + \sqrt{42}}{2}. Since 42>0\sqrt{42} > 0, 8+42>88+\sqrt{42} > 8, so P1>82=4P_1 > \frac{8}{2} = 4. This value is not less than or equal to 1, so it does not yield real solutions for xx and yy.

  2. P2=8422P_2 = \frac{8 - \sqrt{42}}{2}. Let's check if P21P_2 \le 1: 84221\frac{8 - \sqrt{42}}{2} \le 1 84228 - \sqrt{42} \le 2 6426 \le \sqrt{42} Squaring both sides (which are positive): 364236 \le 42. This is true. So, P=8422P = \frac{8 - \sqrt{42}}{2} is the only possible value for xyxy that yields real solutions for xx and yy.

The roots of t22t+P=0t^2 - 2t + P = 0 are t=2±44P2=1±1Pt = \frac{2 \pm \sqrt{4-4P}}{2} = 1 \pm \sqrt{1-P}. We need to ensure y0y \ge 0. The roots are 1+1P1 + \sqrt{1-P} and 11P1 - \sqrt{1-P}. Since P1P \le 1, 1P01-P \ge 0, so 1P\sqrt{1-P} is real. Also, P=xy=842286.4820.76P = xy = \frac{8-\sqrt{42}}{2} \approx \frac{8-6.48}{2} \approx 0.76. So 1P10.76=0.241-P \approx 1-0.76 = 0.24, and 1P0.24<1\sqrt{1-P} \approx \sqrt{0.24} < 1. Thus, both roots 1+1P1 + \sqrt{1-P} and 11P1 - \sqrt{1-P} are positive. Therefore, the condition y0y \ge 0 is satisfied for either assignment of xx and yy.

The value of x5x44=xyx\sqrt[4]{5-x^4} = xy is P=8422P = \frac{8 - \sqrt{42}}{2}.