Solveeit Logo

Question

Question: If x = \(\sqrt{3 + \sqrt{3 + \sqrt{3 + ....to\infty}}}\)then x is equal to...

If x = 3+3+3+....to\sqrt{3 + \sqrt{3 + \sqrt{3 + ....to\infty}}}then x is equal to

A

A rational number

B

An irrational number lying between 2 and 3

C

An integral number

D

None of these

Answer

An irrational number lying between 2 and 3

Explanation

Solution

Given x = 3+3+3+....\sqrt{3 + \sqrt{3 + \sqrt{3 + ....\infty}}}

x = 3+x\sqrt{3 + x}

squaring both side

x2 – x – 3 = 0 Ž x = 1±1+4×1×32\frac{1 \pm \sqrt{1 + 4 \times 1 \times 3}}{2}

x = 1±132\frac{1 \pm \sqrt{13}}{2} (1132\frac{1 - \sqrt{13}}{2} is not possible)

taking +ve sign x » 1+3.62\frac{1 + 3.6}{2} » 2.3

An irrational number b/w 2 and 3