Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If x=asin1t,y=acos1tx=\sqrt{a^{sin^{-1}t}},y=\sqrt{a^{cos^{-1}t}},show that dydx=yx\frac{dy}{dx}=\frac{-y}{x}

Answer

The given equations are x=asin1t,y=acos1tx=\sqrt{a^{sin^{-1}t}},y=\sqrt{a^{cos^{-1}t}}
x=asin1tandy=acos1tx=\sqrt{a^{sin^{-1}t}}\,and\,y=\sqrt{a^{cos^{-1}t}}
x=(asin1t)12andy=(acos1t)12⇒x=(a^{sin^{-1}t})^{\frac{1}{2}} \,and\, y=(a^{cos^{-1}t})^{\frac{1}{2}}
x=a12sin1tandy=a12cos1t⇒x=a^{\frac{1}{2}sin^{-1}t}\, and\, y=a^{\frac{1}{2}cos^{-1}t}
consider x=a12sin1tx=a^{\frac{1}{2}sin^{-1}t}
Taking logarithm on both sides,we obtain
logx=12sin1tlogalogx=\frac{1}{2}sin^{-1}t\,loga
1x.dxdt=12loga.ddt(sin1t)∴\frac{1}{x}.\frac{dx}{dt}=\frac{1}{2}log\,a.\frac{d}{dt}(sin^{-1}t)
dxdt=x2loga.11t2⇒\frac{dx}{dt}=\frac{x}{2}loga.\frac{1}{\sqrt{1-t^2}}
dxdt=xloga21t2⇒\frac{dx}{dt}=\frac{xloga}{2\sqrt{1-t^2}}
Then,consider y=a12cos1ty=a^{\frac{1}{2}cos^{-1}t}
Taking logarithm on both sides,we obtain
logy=12cos1tlogalogy=\frac{1}{2}cos^{-1}t\,loga
1ydydx=12loga.ddt(cos1t)∴\frac{1}{y}\frac{dy}{dx}=\frac{1}{2}loga.\frac{d}{dt}(cos^{-1}t)
dydt=yloga2.(11t2)⇒\frac{dy}{dt}=\frac{yloga}{2}.(\frac{-1}{\sqrt{1-t^2}})
dydt=yloga21t2⇒\frac{dy}{dt}=\frac{-yloga}{2\sqrt{1-t^2}}
dydx=(dydt)(dxdt)=(yloga21t2)(xloga21t2)∴\frac{dy}{dx}=\frac{(\frac{dy}{dt})}{(\frac{dx}{dt})}=\frac{(\frac{-yloga}{2\sqrt{1-t^2)}}}{(\frac{xloga}{2\sqrt{1-t^2}}})
=yx=\frac{-y}{x}
Hence,proved.