Question
Mathematics Question on Continuity and differentiability
If x=asin−1t,y=acos−1t,show that dxdy=x−y
Answer
The given equations are x=asin−1t,y=acos−1t
x=asin−1tandy=acos−1t
⇒x=(asin−1t)21andy=(acos−1t)21
⇒x=a21sin−1tandy=a21cos−1t
consider x=a21sin−1t
Taking logarithm on both sides,we obtain
logx=21sin−1tloga
∴x1.dtdx=21loga.dtd(sin−1t)
⇒dtdx=2xloga.1−t21
⇒dtdx=21−t2xloga
Then,consider y=a21cos−1t
Taking logarithm on both sides,we obtain
logy=21cos−1tloga
∴y1dxdy=21loga.dtd(cos−1t)
⇒dtdy=2yloga.(1−t2−1)
⇒dtdy=21−t2−yloga
∴dxdy=(dtdx)(dtdy)=(21−t2xloga(21−t2)−yloga)
=x−y
Hence,proved.