Solveeit Logo

Question

Question: If $x \sin(\frac{y}{x})dy = (y \sin(\frac{y}{x})-x)dx$ and $y(1) = \frac{\pi}{2}$ then the value of ...

If xsin(yx)dy=(ysin(yx)x)dxx \sin(\frac{y}{x})dy = (y \sin(\frac{y}{x})-x)dx and y(1)=π2y(1) = \frac{\pi}{2} then the value of cos(ye)cos(\frac{y}{e}) is _______.

Answer

1

Explanation

Solution

  1. Rewrite the differential equation in the form dydx=yx1sin(yx)\frac{dy}{dx} = \frac{y}{x} - \frac{1}{\sin(\frac{y}{x})}.
  2. Identify it as a homogeneous differential equation and substitute y=vxy=vx, which implies dydx=v+xdvdx\frac{dy}{dx} = v + x\frac{dv}{dx}.
  3. The substitution leads to xdvdx=1sin(v)x\frac{dv}{dx} = -\frac{1}{\sin(v)}.
  4. Separate variables to get sin(v)dv=dxx\sin(v)dv = -\frac{dx}{x}.
  5. Integrate both sides: sin(v)dv=dxx\int \sin(v)dv = -\int \frac{dx}{x}, yielding cos(v)=lnx+C-\cos(v) = -\ln|x| + C.
  6. Simplify to cos(v)=lnxC\cos(v) = \ln|x| - C. Substitute back v=yxv = \frac{y}{x} to get cos(yx)=lnx+C1\cos(\frac{y}{x}) = \ln|x| + C_1.
  7. Apply the initial condition y(1)=π2y(1) = \frac{\pi}{2}: cos(π/21)=ln1+C1    0=0+C1    C1=0\cos(\frac{\pi/2}{1}) = \ln|1| + C_1 \implies 0 = 0 + C_1 \implies C_1 = 0.
  8. The particular solution is cos(yx)=lnx\cos(\frac{y}{x}) = \ln|x|.
  9. Evaluate cos(ye)\cos(\frac{y}{e}) by substituting x=ex=e: cos(ye)=lne=1\cos(\frac{y}{e}) = \ln|e| = 1.