Question
Question: If x sin (α + y) = sin y and sec<sup>2</sup>y\(\frac{dy}{dx}\) = \(\frac{m}{(x^{2} + 2nx + 1)}\). Th...
If x sin (α + y) = sin y and sec2ydxdy = (x2+2nx+1)m. Then
A
m – n = 1
B
m + n = 1
C
m2 + n2= 1
D
m = n
Answer
m2 + n2= 1
Explanation
Solution
x sin α cos y + x cos α sin y = sin y
x sin α cot y + x cos α = 1
cot y = xsinα1−xcosα
tan y = 1−xcosαxsinα
sec2y . dxdy
= (1−xcosα)2sinα(1−xcosα)−xsinα(−cosα)sec2y . dxdy
= (1−xcosα)2sinα−xsinαcosα+xsinαcosα
sec2y dxdy = (1−xcosα)2sinα
m = sin α n = – cos α
m2 + n2 = 1