Question
Question: If \(x = \sin t\) , \(y = \cos p t\), then...
If x=sint , y=cospt, then
A
(1−x2)y2+xy1+p2y=0
B
(1−x2)y2+xy1−p2y=0
C
(1+x2)y2−xy1+p2y=0
D
(1−x2)y2−xy1+p2y=0
Answer
(1−x2)y2−xy1+p2y=0
Explanation
Solution
x=sint , y=cospt
dtdx=cost; dtdy=−psinpt; dxdy=cost−psinpt
dx2d2y=cos2t−costp2cospt(dt/dx)−psinptsint(dt/dx)
⇒ (1−x2)dx2d2y−xdxdy+p2y=0
or (1−x2)y2−xy1+p2y=0.