Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If x=sintcos2tx = \sin\: t \: \cos \: 2t and y=costsin2ty = \cos\: t\: \sin\: 2t, then at t=π4 t = \frac{\pi}{4}, the value of dydx\frac{dy}{dx} is equal to :

A

-2

B

2

C

12\frac{1}{2}

D

12- \frac{1}{2}

Answer

12\frac{1}{2}

Explanation

Solution

Let x=sintcos2tx = \sin \, t \cos 2 \, t and y=cost.sin2ty = \cos \:t. \sin \:2t Differentiate both w.r.t 't' dxdt=costcos2t=2sint.sin2t \frac{dx}{dt} = \cos \: t \: \cos 2t = 2 \:\sin \:t . \sin\: 2t and dydt=2cost.cos2tsin2t.sint\frac{dy}{dt} = 2 \cos t .\cos 2t -\sin 2t .\sin t Now, dydt=dydtdxdt=2cost.cos2tsin2t.sintcost.cos2t2sint.sin2t\frac{dy}{dt} = \frac{dy dt}{dx dt }= \frac{2 \cos t .\cos 2t -\sin 2t .\sin t}{\cos t.\cos 2t- 2\sin t. \sin 2t} Put t=π4,dydx=2cosπ4.cosπ2sinπ2.sinπ4cosπ4.cosπ22sinπ4.sinπ2 t = \frac{\pi}{4} , \frac{dy}{dx} = \frac{2 \cos \frac{\pi}{4} .\cos \frac{\pi }{2} -\sin \frac{\pi }{2} .\sin \frac{\pi }{4}}{\cos \frac{\pi }{4}.\cos \frac{\pi }{2}- 2\sin \frac{\pi }{4}. \sin \frac{\pi }{2}} 122(12)=121212=12\frac{\frac{-1}{\sqrt{2}}}{-2\left(\frac{1}{\sqrt{2}}\right)} = \frac{1}{2} \frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}=\frac{1}{2}