Solveeit Logo

Question

Question: If ѓ(x) = sin \(\left\{ \frac{\pi}{3}\lbrack x\rbrack - x^{2} \right\}\) for 2 \< x \< 3 and [x] den...

If ѓ(x) = sin {π3[x]x2}\left\{ \frac{\pi}{3}\lbrack x\rbrack - x^{2} \right\} for 2 < x < 3 and [x] denotes the greatest integer less than or equal to x, then ѓў (π/3\sqrt{\pi/3}) is equal to –

A

π/3\sqrt{\pi/3}

B

π/3\sqrt{\pi/3}

C

π\sqrt{\pi}

D

None of these

Answer

π/3\sqrt{\pi/3}

Explanation

Solution

Q 2 < x < 3

\ [x] = 2

then ƒ(x) = sin {2π3x2}\left\{ \frac{2\pi}{3} - x^{2} \right\}

\ ƒ¢(x) = cos (2π3x2)\left( \frac{2\pi}{3} - x^{2} \right) (– 2x)

\ ƒ¢(π3)\left( \sqrt{\frac{\pi}{3}} \right) = cos (2π3π3)\left( \frac{2\pi}{3} - \frac{\pi}{3} \right) (2π3)\left( - 2\sqrt{\frac{\pi}{3}} \right)

= 12\frac{1}{2} . (2π3)\left( - 2\sqrt{\frac{\pi}{3}} \right)

= –π3\sqrt{\frac{\pi}{3}}.