Solveeit Logo

Question

Question: If \[x = \sin \dfrac{{2\pi }}{7} + \sin \dfrac{{4\pi }}{7} + \sin \dfrac{{8\pi }}{7}\] and \[y = \co...

If x=sin2π7+sin4π7+sin8π7x = \sin \dfrac{{2\pi }}{7} + \sin \dfrac{{4\pi }}{7} + \sin \dfrac{{8\pi }}{7} and y=cos2π7+cos4π7+cos8π7y = \cos \dfrac{{2\pi }}{7} + \cos \dfrac{{4\pi }}{7} + \cos \dfrac{{8\pi }}{7} then x2+y2{x^2} + {y^2} equals
A. 1
B. 2
C. 3
D. 4

Explanation

Solution

We have been given the value of xx and yy in the question.
We will first find the numerical values of these two variables and use them to find x2+y2{x^2} + {y^2}.
We will solve for yy by taking a=2π7a = \dfrac{{2\pi }}{7} and simplify to find the values of both the variables.
on using these two values to find x2+y2{x^2} + {y^2} we get the required answer.

Formula used: 2cosAsinB=sin(A+B)sin(AB)2\cos A\sin B = \sin (A + B) - \sin (A - B)
2sinAcosB=sin(A+B)+sin(AB)2\sin A\cos B = \sin (A + B) + \sin (A - B)
cos(AB)=sinAsinB+cosAcosB\cos (A - B) = \sin A\sin B + \cos A\cos B
(a+b+c)2=a2+b2+c2+2ab+2bc+2ca{(a + b + c)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca
Trigonometric identity, sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1

Complete step-by-step answer:
We first take y=cos2π7+cos4π7+cos8π7(1)y = \cos \dfrac{{2\pi }}{7} + \cos \dfrac{{4\pi }}{7} + \cos \dfrac{{8\pi }}{7} \to (1)
Let us considera=2π7a = \dfrac{{2\pi }}{7}.
7a=2π\Rightarrow 7a = 2\pi.
Substituting 7a=2π7a = 2\pi in (1)(1)and we get,
y=cosa+cos2a+cos4a\Rightarrow y = \cos a + \cos 2a + \cos 4a
Now we multiply and divide 2sina22\sin \dfrac{a}{2} on the right-hand side.
12sina2(2sina2cosa+2sina2cos2a+2sina2cos4a)\Rightarrow \dfrac{1}{{2\sin \dfrac{a}{2}}}\left( {2\sin \dfrac{a}{2}\cos a + 2\sin \dfrac{a}{2}\cos 2a + 2\sin \dfrac{a}{2}\cos 4a} \right)
Since 2cosAsinB=sin(A+B)sin(AB)2\cos A\sin B = \sin (A + B) - \sin (A - B)we can write the above as
12sina2(sin(a+a2)sin(aa2)+sin(2a+a2)sin(2aa2)+sin(4a+a2)sin(4aa2))\Rightarrow \dfrac{1}{{2\sin \dfrac{a}{2}}}\left( {\sin \left( {a + \dfrac{a}{2}} \right) - \sin \left( {a - \dfrac{a}{2}} \right) + \sin \left( {2a + \dfrac{a}{2}} \right) - \sin \left( {2a - \dfrac{a}{2}} \right) + \sin \left( {4a + \dfrac{a}{2}} \right) - \sin \left( {4a - \dfrac{a}{2}} \right)} \right)
On simplification we get,
12sina2(sin(3a2)sin(a2)+sin(5a2)sin(3a2)+sin(9a2)sin(7a2))\Rightarrow \dfrac{1}{{2\sin \dfrac{a}{2}}}\left( {\sin \left( {\dfrac{{3a}}{2}} \right) - \sin \left( {\dfrac{a}{2}} \right) + \sin \left( {\dfrac{{5a}}{2}} \right) - \sin \left( {\dfrac{{3a}}{2}} \right) + \sin \left( {\dfrac{{9a}}{2}} \right) - \sin \left( {\dfrac{{7a}}{2}} \right)} \right)
Cancelling the like terms with opposite signs and substituting 7a=2π7a = 2\pi in the last term.
12sina2(sin(a2)+sin(5a2)+sin(9a2)sin(2π2))\Rightarrow \dfrac{1}{{2\sin \dfrac{a}{2}}}\left( { - \sin \left( {\dfrac{a}{2}} \right) + \sin \left( {\dfrac{{5a}}{2}} \right) + \sin \left( {\dfrac{{9a}}{2}} \right) - \sin \left( {\dfrac{{2\pi }}{2}} \right)} \right)
We know that sinnπ=0foralln{{sin n\pi = 0 for}}\,{\text{all}}\,{\text{n}}, hence sin(2π2)=0\sin \left( {\dfrac{{2\pi }}{2}} \right) = 0
12sina2(sin(a2)+sin(5a2)+sin(9a2))(2)\Rightarrow \dfrac{1}{{2\sin \dfrac{a}{2}}}\left( { - \sin \left( {\dfrac{a}{2}} \right) + \sin \left( {\dfrac{{5a}}{2}} \right) + \sin \left( {\dfrac{{9a}}{2}} \right)} \right) \to (2)
Again we use the formula, 2sinAcosB=sin(A+B)+sin(AB)2\sin A\cos B = \sin (A + B) + \sin (A - B) then we can take A=7a2A = \dfrac{{7a}}{2} and B=aB = a
That is we can write, sin(5a2)+sin(9a2)=sin(7a2a)+sin(7a2+a)=2sin(7a2)cos(a)\sin \left( {\dfrac{{5a}}{2}} \right) + \sin \left( {\dfrac{{9a}}{2}} \right) = \sin \left( {\dfrac{{7a}}{2} - a} \right) + \sin \left( {\dfrac{{7a}}{2} + a} \right) = 2\sin \left( {\dfrac{{7a}}{2}} \right)\cos (a)
Substituting this in equation (2)
12sina2(sin(a2)+2sin(7a2)cos(a))\Rightarrow \dfrac{1}{{2\sin \dfrac{a}{2}}}\left( { - \sin \left( {\dfrac{a}{2}} \right) + 2\sin \left( {\dfrac{{7a}}{2}} \right)\cos (a)} \right)
Again, we can substitute7a=2π7a = 2\pi
12sina2(sin(a2)+sin2πcosa)\Rightarrow \dfrac{1}{{2\sin \dfrac{a}{2}}}\left( { - \sin \left( {\dfrac{a}{2}} \right) + \sin 2\pi \cos a} \right)
sinnπ=0foralln{{sin n\pi = 0 for}}\,{\text{all}}\,{\text{n}}, sin2πcosa=0×cosa=0\sin 2\pi \cos a = 0 \times \cos a = 0
12sina2×sin(a2)\Rightarrow \dfrac{1}{{2\sin \dfrac{a}{2}}} \times - \sin \left( {\dfrac{a}{2}} \right)
Cancelling 1sina2×sin(a2)\dfrac{1}{{\sin \dfrac{a}{2}}} \times - \sin \left( {\dfrac{a}{2}} \right) we can get the value of y.
y=12\Rightarrow y = - \dfrac{1}{2}
Now to find xx we need to find sin2π7+sin4π7+sin8π7(3)\sin \dfrac{{2\pi }}{7} + \sin \dfrac{{4\pi }}{7} + \sin \dfrac{{8\pi }}{7} \to (3).
By taking 7a=2π7a = 2\pi and solving for (1)\left( 1 \right) and (3)\left( 3 \right) as follows,
(sina+sin2a+sin4a)2+(cosa+cos2a+cos4a)2(4){(\sin a + \sin 2a + \sin 4a)^2} + {(\cos a + \cos 2a + \cos 4a)^2} \to (4) will give the value of xx.
By using (a+b+c)2=a2+b2+c2+2ab+2bc+2ca{(a + b + c)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca we can write (4) as,

\Rightarrow {\sin ^2}a + {\sin ^2}2a + {\sin ^2}4a + {\cos ^2}a + {\cos ^2}2a + {\cos ^2}4a + 2(\sin a\sin 2a + \sin 2a\sin 4a + \sin 4a\sin a + \cos a\cos 2a \\\ \+ \cos 2a\cos 4a + \cos 4a\cos a) \\\ \end{gathered} $$ By using the trigonometric identity $${\sin ^2}x + {\cos ^2}x = 1$$ $$({\sin ^2}a + {\cos ^2}a) + ({\sin ^2}2a + {\cos ^2}2a) + ({\sin ^2}4a + {\cos ^2}4a) \Rightarrow 1 + 1 + 1 \to (5)$$ Now, by using (5) $$ \Rightarrow 1 + 1 + 1 + 2(\sin a\sin 2a + \sin 2a\sin 4a + \sin 4a\sin a + \cos a\cos 2a + \cos 2a\cos 4a + \cos 4a\cos a)$$ On adding we get, $$ \Rightarrow 3 + 2(\sin a\sin 2a + \sin 2a\sin 4a + \sin 4a\sin a + \cos a\cos 2a + \cos 2a\cos 4a + \cos 4a\cos a)$$ By using $$\cos (A - B) = \sin A\sin B + \cos A\cos B$$ we can further do as follows, $$ \Rightarrow 3 + 2((\sin a\sin 2a + \cos a\cos 2a) + (\sin 2a\sin 4a + \cos 2a\cos 4a) + (\sin 4a\sin a + \cos 4a\cos a))$$ Using the formula and we get, $$ \Rightarrow 3 + 2(\cos (2a - a) + \cos (4a - 2a) + \cos (4a - a))$$ On subtracting the bracket terms and we get, $$ \Rightarrow 3 + 2(\cos (a) + \cos (2a) + \cos (3a))$$ Since $${{cos(2\pi - \theta ) = cos(\theta )cos(2\pi ) + sin(\theta )sin(2\pi )}}$$ and $$\cos 2\pi = 1,\sin 2\pi = 0$$ We can write $$cos(2\pi - \theta ) = \cos \theta $$ Using this in $$\cos 3a = \cos (2\pi - 4a) = \cos 4a$$ $$ \Rightarrow 3 + 2(\cos (a) + \cos (2a) + \cos (4a))$$ Since we already have $$y = \cos (a) + \cos (2a) + \cos (4a) = - \dfrac{1}{2}$$ $$ \Rightarrow 3 + 2 \times \left( { - \dfrac{1}{2}} \right)$$ On cancelling the term and we get. $$ \Rightarrow 3 - 1$$ Let us subtracting we get, $$ \Rightarrow 2$$ Now equation $$\left( 4 \right)$$ can be written as, $$ \Rightarrow {(\sin a + \sin 2a + \sin 4a)^2} + {(\cos a + \cos 2a + \cos 4a)^2} = 2$$ We can again substitute$$y = \cos (a) + \cos (2a) + \cos (4a) = - \dfrac{1}{2}$$ in the above and we arrive at, $$ \Rightarrow {(\sin a + \sin 2a + \sin 4a)^2} + {\left( { - \dfrac{1}{2}} \right)^2} = 2$$ On squaring the term and we get, $$ \Rightarrow {(\sin a + \sin 2a + \sin 4a)^2} + \left( {\dfrac{1}{4}} \right) = 2$$ Taking the fraction term as RHS and change into the negative sign we get $$ \Rightarrow {(\sin a + \sin 2a + \sin 4a)^2} = 2 - \left( {\dfrac{1}{4}} \right)$$ Taking LCM as RHS and we get, $$ \Rightarrow {(\sin a + \sin 2a + \sin 4a)^2} = \dfrac{{8 - 1}}{4}$$ Let us subtract the numerator term on RHS we get, $$ \Rightarrow {(\sin a + \sin 2a + \sin 4a)^2} = \dfrac{7}{4}$$ By taking square root on both sides we get, $$ \Rightarrow \sin a + \sin 2a + \sin 4a = \dfrac{{\sqrt 7 }}{2}$$ This is because; the square of $$2$$ is $$4$$. From the above calculations, we have obtained the values as $$x = \sin \dfrac{{2\pi }}{7} + \sin \dfrac{{4\pi }}{7} + \sin \dfrac{{8\pi }}{7} = \dfrac{{\sqrt 7 }}{2}$$ $$y = \cos \dfrac{{2\pi }}{7} + \cos \dfrac{{4\pi }}{7} + \cos \dfrac{{8\pi }}{7} = - \dfrac{1}{2}$$ To find $${x^2} + {y^2}$$ we now use the above values, $$ \Rightarrow {\left( {\dfrac{{\sqrt 7 }}{2}} \right)^2} + {\left( { - \dfrac{1}{2}} \right)^2}$$ On squaring the term and we get, $$ \Rightarrow \left( {\dfrac{7}{4}} \right) + \left( {\dfrac{1}{4}} \right)$$ On adding the term we get, $$ \Rightarrow \dfrac{8}{4}$$ Let us divide the term and we get, $$ \Rightarrow 2$$ On simplifying this we arrive at the answer as $$2$$. **The correct option for this question is B.** **Note:** We need to be aware of the trigonometric conversions and formulas to solve this problem. It is important for us to know that $${{sin n\pi = 0 for}}\,{\text{all}}\,{\text{n}}$$ whereas $${{cos n\pi = 1when}}\,{\text{n}}\,{\text{is}}\,{\text{even}}$$ and $${{cos n\pi = - 1when}}\,{\text{n}}\,{\text{is}}\,{\text{odd}}$$. When using formulas such as $$2\cos A\sin B = \sin (A + B) - \sin (A - B)$$ $$2\sin A\cos B = \sin (A + B) + \sin (A - B)$$ $$\cos (A - B) = \sin A\sin B + \cos A\cos B$$ We need to be careful in choosing the values of A and B accordingly to get the required answer.