Question
Question: If \[x = \sin \dfrac{{2\pi }}{7} + \sin \dfrac{{4\pi }}{7} + \sin \dfrac{{8\pi }}{7}\] and \[y = \co...
If x=sin72π+sin74π+sin78π and y=cos72π+cos74π+cos78π then x2+y2 equals
A. 1
B. 2
C. 3
D. 4
Solution
We have been given the value of x and y in the question.
We will first find the numerical values of these two variables and use them to find x2+y2.
We will solve for y by taking a=72π and simplify to find the values of both the variables.
on using these two values to find x2+y2 we get the required answer.
Formula used: 2cosAsinB=sin(A+B)−sin(A−B)
2sinAcosB=sin(A+B)+sin(A−B)
cos(A−B)=sinAsinB+cosAcosB
(a+b+c)2=a2+b2+c2+2ab+2bc+2ca
Trigonometric identity, sin2x+cos2x=1
Complete step-by-step answer:
We first take y=cos72π+cos74π+cos78π→(1)
Let us considera=72π.
⇒7a=2π.
Substituting 7a=2π in (1)and we get,
⇒y=cosa+cos2a+cos4a
Now we multiply and divide 2sin2a on the right-hand side.
⇒2sin2a1(2sin2acosa+2sin2acos2a+2sin2acos4a)
Since 2cosAsinB=sin(A+B)−sin(A−B)we can write the above as
⇒2sin2a1(sin(a+2a)−sin(a−2a)+sin(2a+2a)−sin(2a−2a)+sin(4a+2a)−sin(4a−2a))
On simplification we get,
⇒2sin2a1(sin(23a)−sin(2a)+sin(25a)−sin(23a)+sin(29a)−sin(27a))
Cancelling the like terms with opposite signs and substituting 7a=2π in the last term.
⇒2sin2a1(−sin(2a)+sin(25a)+sin(29a)−sin(22π))
We know that sinnπ=0foralln, hence sin(22π)=0
⇒2sin2a1(−sin(2a)+sin(25a)+sin(29a))→(2)
Again we use the formula, 2sinAcosB=sin(A+B)+sin(A−B) then we can take A=27a and B=a
That is we can write, sin(25a)+sin(29a)=sin(27a−a)+sin(27a+a)=2sin(27a)cos(a)
Substituting this in equation (2)
⇒2sin2a1(−sin(2a)+2sin(27a)cos(a))
Again, we can substitute7a=2π
⇒2sin2a1(−sin(2a)+sin2πcosa)
sinnπ=0foralln, sin2πcosa=0×cosa=0
⇒2sin2a1×−sin(2a)
Cancelling sin2a1×−sin(2a) we can get the value of y.
⇒y=−21
Now to find x we need to find sin72π+sin74π+sin78π→(3).
By taking 7a=2π and solving for (1) and (3) as follows,
(sina+sin2a+sin4a)2+(cosa+cos2a+cos4a)2→(4) will give the value of x.
By using (a+b+c)2=a2+b2+c2+2ab+2bc+2ca we can write (4) as,