Question
Mathematics Question on Inverse Trigonometric Functions
If x=sin(2tan−12) and y=sin(21tan−134) ,than
A
x>y and y2=1−x
B
x<y
C
x>y and y2=x
D
y2=1+x
Answer
x>y and y2=1−x
Explanation
Solution
Let x=sin(2tan−12) =sin2θ where tanθ=2 =1+tan2θ2tanθ=1+42(2)=54 y=sin(21tan−134) =sin2ϕ where tanϕ=34 ∴cosϕ=53 ∴1−2sin22ϕ=53 ⇒2sin22ϕ=52 ⇒sin22ϕ=51 ⇒sin2ϕ=±51 ∴y=±51 ∴x>y and y2=1−x