Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

If x=sin(2tan12)x=\sin(2\,\tan^{-1}2) and y=sin(12tan143)y=\sin\left(\frac{1}{2}\tan^{-1}\frac{4}{3}\right) ,than

A

x>yx>y and y2=1xy^2=1-x

B

x<yx < y

C

x>yx>y and y2=xy^2=x

D

y2=1+xy^2=1+x

Answer

x>yx>y and y2=1xy^2=1-x

Explanation

Solution

Let x=sin(2tan12)x= sin\left(2\, tan^{-1}\,2\right) =sin2θ = sin\, 2\theta where tanθ=2tan \theta = 2 =2tanθ1+tan2θ=2(2)1+4=45= \frac{2\,tan\,\theta}{1+tan^{2} \,\theta} = \frac{2\left(2\right)}{1+4} = \frac{4}{5} y=sin(12tan143)y= sin\left(\frac{1}{2} tan^{-1} \frac{4}{3}\right) =sinϕ2 = sin \frac{\phi}{2} where tanϕ=43tan \phi = \frac{4}{3} cosϕ=35\therefore cos \phi = \frac{3}{5} 12sin2ϕ2=35 \therefore 1-2 sin^{2} \frac{\phi}{2} = \frac{3}{5} 2sin2ϕ2=25\Rightarrow 2sin^{2} \frac{\phi}{2} = \frac{2}{5} sin2ϕ2=15 \Rightarrow sin^{2} \frac{\phi}{2} = \frac{1}{5} sinϕ2=±15\Rightarrow sin \frac{\phi}{2} = \pm \frac{1}{\sqrt{5}} y=±15\therefore y= \pm\frac{1}{\sqrt{5}} x>y\therefore x > y and y2=1xy^{2}=1-x