Solveeit Logo

Question

Question: If \( x={{\sin }^{-1}}(\sin 10) \) and \( y={{\cos }^{-1}}(\cos 10) \) , then y – x is equals to...

If x=sin1(sin10)x={{\sin }^{-1}}(\sin 10) and y=cos1(cos10)y={{\cos }^{-1}}(\cos 10) , then y – x is equals to

Explanation

Solution

Hint : To solve this question we will take the help of graph of functions y=sin1(sinx)y={{\sin }^{-1}}(\operatorname{sinx}) and y=cos1(cosx)y={{\cos }^{-1}}(cosx) . What we will do is we will check on which line the value 10 on graph y=sin1(sinx)y={{\sin }^{-1}}(\operatorname{sinx}) and y=cos1(cosx)y={{\cos }^{-1}}(cosx) as graphs of functions y=sin1(sinx)y={{\sin }^{-1}}(\operatorname{sinx}) and y=cos1(cosx)y={{\cos }^{-1}}(cosx) are continuous.
Then, finally we will evaluate the value of y and x and hence find y – x .

Complete step-by-step answer :
Before we solve the question to get value of y – x ,
Let us see the properties and graph of function y=sin1(sinx)y={{\sin }^{-1}}(\operatorname{sinx}) .
sin1(sinx)=πx;3π2xπ2{{\sin }^{-1}}(\operatorname{sinx})=-\pi -x;\dfrac{-3\pi }{2}\le x\le \dfrac{-\pi }{2} ,
=x;π2xπ2=x;\dfrac{-\pi }{2}\le x\le \dfrac{\pi }{2} ,
=π;π2x3π2=\pi ;\dfrac{\pi }{2}\le x\le \dfrac{3\pi }{2} .
And, graph of y=sin1(sinx)y={{\sin }^{-1}}(\operatorname{sinx}) is given as ,

Let us see the properties and graph of the function y=cos1(cosx)y={{\cos }^{-1}}(cosx) .
cos1(cosx)=x;πx0{{\cos }^{-1}}(cosx)=-x;-\pi \le x\le 0
=x;0xπ=x;0\le x\le \pi
=2πx;πx2π=2\pi -x;\pi \le x\le 2\pi
And, graph of y=cos1(cosx)y={{\cos }^{-1}}(cosx) is given as ,

Now, let us solve for x=sin1(sin10)x={{\sin }^{-1}}(\sin 10) first,
As we see that, 5π2107π2\dfrac{5\pi }{2}\le 10\le \dfrac{7\pi }{2}
So, we can say that 10 lies on line 3πx3\pi -x , so 10 will satisfy the equation y=3πxy=3\pi -x
Putting x = 10 in y=3πxy=3\pi -x , we get
y=3π10y=3\pi -10 .
Or, 3π10=sin1(sin10)3\pi -10={{\sin }^{-1}}(\sin 10) …… ( i )
Now, let us solve for y=cos1(cos10)y={{\cos }^{-1}}(cos10) ,
As we see that, 3π104π3\pi \le 10\le 4\pi ,
So, we can say that 10 lies on line 4πx4\pi -x , so 10 will satisfy the equation y=4πxy=4\pi -x
Putting x = 10 in y=4πxy=4\pi -x , we get
y=4π10y=4\pi -10 .
Or, 4π10=cos1(cos10)4\pi -10={{\cos }^{-1}}(cos10) …..( ii )
Now, we have to find the value of, y – x that is cos1(cos10)sin1(sin10){{\cos }^{-1}}(cos10)-{{\sin }^{-1}}(\sin 10) ,which is equals to
yx=(4π10)(3π10)y-x=(4\pi -10)-(3\pi -10) .

Note : Graph of y=sin1(sinx)y={{\sin }^{-1}}(\operatorname{sinx}) and y=cos1(cosx)y={{\cos }^{-1}}(cosx) are very important function and graphs should be remembered while solving questions based on inverse trigonometric functions. The value of input should be checked on which line of the function does it lie carefully as it may change the output of the function.