Solveeit Logo

Question

Question: If \(x = {\sin ^{ - 1}}\left( {3t - 4{t^3}} \right)\) and \(y = {\cos ^{ - 1}}\left( {\sqrt {1 - {t^...

If x=sin1(3t4t3)x = {\sin ^{ - 1}}\left( {3t - 4{t^3}} \right) and y=cos1(1t2)y = {\cos ^{ - 1}}\left( {\sqrt {1 - {t^2}} } \right) then dydx\dfrac{{dy}}{{dx}} is equal to?

Explanation

Solution

To solve this type of questions, the best approach is to always remember the standard trigonometric identities. Notice here that the expression given for x=sin1(3t4t3)x = {\sin ^{ - 1}}\left( {3t - 4{t^3}} \right) can be simplified using the standard formula of sin3θ\sin 3\theta and the expression given y=cos1(1t2)y = {\cos ^{ - 1}}\left( {\sqrt {1 - {t^2}} } \right) can be reduced to a simpler form by using standard identity sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^{^2}}\theta = 1 . So basic algebraic rules and trigonometric identities
have to be kept in mind while solving the given problem.

Complete step by step answer:
To simplify the question, let us assume that t=sinθt = \sin \theta . Now, put the value of tt in the expression for
xx , we get;
x=sin1(3t4t3)\Rightarrow x = {\sin ^{ - 1}}\left( {3t - 4{t^3}} \right)
x=(3sinθ4sin3θ)\Rightarrow x = \left( {3\sin \theta - 4{{\sin }^3}\theta } \right)
By identity, sin3θ=3sinθ4sin3θ\sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta the above expression can be reduced to;
x=sin1(sin3θ)\Rightarrow x = {\sin ^{ - 1}}\left( {\sin 3\theta } \right)
By identity, sin1(sinθ)=θ{\sin ^{ - 1}}\left( {\sin \theta } \right) = \theta therefore we get;
x=3θ\Rightarrow x = 3\theta
Now, let us try to simplify the given expression for yy by replacing t=sinθt = \sin \theta , we get;
y=cos1(1t2)\Rightarrow y = {\cos ^{ - 1}}\left( {\sqrt {1 - {t^2}} } \right)
y=cos1(1sin2θ)\Rightarrow y = {\cos ^{ - 1}}\left( {\sqrt {1 - {{\sin }^2}\theta } } \right)
By identity, sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1 we know 1sin2θ=cosθ\sqrt {1 - {{\sin }^2}\theta } = \cos \theta , we get;
y=cos1(cosθ)\Rightarrow y = {\cos ^{ - 1}}\left( {\cos \theta } \right)
y=θ\Rightarrow y = \theta
Now, we will calculate the derivative of xx and yy;
Differentiating xx with respect to (w.r.t.) θ\theta , we get;
x=3θ\because x = 3\theta
dxdθ=3ddθ(θ)\therefore \dfrac{{dx}}{{d\theta }} = 3\dfrac{d}{{d\theta }}\left( \theta \right)
By the differentiation formula, ddx(x)=1\dfrac{d}{{dx}}\left( x \right) = 1, we get;
dxdθ=3\Rightarrow \dfrac{{dx}}{{d\theta }} = 3 ......(1)......\left( 1 \right)
Now Differentiating yy with respect to (w.r.t.) θ\theta , we get;
y=θ\because y = \theta
dydθ=ddθ(θ)\therefore \dfrac{{dy}}{{d\theta }} = \dfrac{d}{{d\theta }}\left( \theta \right)
dydθ=1\Rightarrow \dfrac{{dy}}{{d\theta }} = 1 ......(2)......\left( 2 \right)
Now, according to the given question we have to calculate dydx\dfrac{{dy}}{{dx}} therefore dividing equation (2)\left( 2 \right) by equation (1)\left( 1 \right), we get;
(dydθ)(dxdθ)=13\Rightarrow \dfrac{{\left( {\dfrac{{dy}}{{d\theta }}} \right)}}{{\left( {\dfrac{{dx}}{{d\theta }}} \right)}} = \dfrac{1}{3}
dydx=13\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{3}
Therefore, the value of dydx\dfrac{{dy}}{{dx}} is 13\dfrac{1}{3}.
This question can also be solved like this:
Let t=sinθt = \sin \theta
So, θ=sin1(t)\theta = {\sin ^{ - 1}}\left( t \right)
By identity, sin3θ=3sinθ4sin3θ\sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta
x=sin1(3t4t3)\Rightarrow x = {\sin ^{ - 1}}\left( {3t - 4{t^3}} \right)
x=sin1sin(3θ)\Rightarrow x = {\sin ^{ - 1}}\sin \left( {3\theta } \right)
x=3θ\Rightarrow x = 3\theta
x=3sin1t\Rightarrow x = 3{\sin ^{ - 1}}t (θ=sin1t)\left( {\because \theta = {{\sin }^{ - 1}}t} \right)
By identity , sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1
cosθ=±1sin2θ\Rightarrow \cos \theta = \pm \sqrt {1 - {{\sin }^2}\theta }
y=cos1(1t2)\Rightarrow y = {\cos ^{ - 1}}\left( {\sqrt {1 - {t^2}} } \right)
y=cos1cos(θ)\Rightarrow y = {\cos ^{ - 1}}\cos \left( \theta \right)
y=θ\Rightarrow y = \theta
y=sin1t\Rightarrow y = {\sin ^{ - 1}}t
To calculate dydx\dfrac{{dy}}{{dx}} , we should calculate dydt\dfrac{{dy}}{{dt}} and dxdt\dfrac{{dx}}{{dt}}.
dydt=ddt(sin1t)\Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}\left( {{{\sin }^{ - 1}}t} \right)
By standard formula; ddx(sin1x)=11x2\dfrac{d}{{dx}}\left( {{{\sin }^{ - 1}}x} \right) = \dfrac{1}{{\sqrt {1 - {x^2}} }}
Therefore dydt=11t2\dfrac{{dy}}{{dt}} = \dfrac{1}{{\sqrt {1 - {t^2}} }}
Now, we will calculate dxdt\dfrac{{dx}}{{dt}}
dxdt=3ddt(sin1t)\Rightarrow \dfrac{{dx}}{{dt}} = 3\dfrac{d}{{dt}}\left( {{{\sin }^{ - 1}}t} \right)
Therefore dxdt=31t2\dfrac{{dx}}{{dt}} = \dfrac{3}{{\sqrt {1 - {t^2}} }}
Now , calculating dydx\dfrac{{dy}}{{dx}} by putting the values of dydt\dfrac{{dy}}{{dt}} and dxdt\dfrac{{dx}}{{dt}} ;
dydx=11t231t2\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{1}{{\sqrt {1 - {t^2}} }}}}{{\dfrac{3}{{\sqrt {1 - {t^2}} }}}}
On further calculation;
Therefore the value of dydx\dfrac{{dy}}{{dx}} is given as ;
dydx=13\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{3}

Note:
The given question deals with basic simplification of trigonometric functions by using some of the standard trigonometric identities such as; sin3θ=3sinθ4sin3θ\sin 3 \theta= 3 \sin \theta - 4 \sin^3 \theta and sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1.
Besides this, simple algebraic rules and identities are also of significant use in such types of problems.