Solveeit Logo

Question

Mathematics Question on Derivatives

If x=sin1(3t4t3)x={{\sin }^{-1}}(3t-4{{t}^{3}}) and y=cos1(1t2),y={{\cos }^{-1}}(\sqrt{1-{{t}^{2}}}), then dydx\frac{dy}{dx} is equal to

A

12\frac{1}{2}

B

23\frac{2}{3}

C

13\frac{1}{3}

D

25\frac{2}{5}

Answer

13\frac{1}{3}

Explanation

Solution

x=sin1(3t4t3)x={{\sin }^{-1}}(3t-4{{t}^{3}}) and y=cos1(1t2)y={{\cos }^{-1}}(\sqrt{1-{{t}^{2}}}) Put t=sinθt=\sin \theta ...(i) Then, x=sin1(3sinθ4sin3θ)x={{\sin }^{-1}}(3\sin \theta -4{{\sin }^{3}}\theta )
=sin1(sin3θ)=3θ=3sin1t={{\sin }^{-1}}(\sin 3\theta )=3\theta =3{{\sin }^{-1}}t and y=cos11sin2θy={{\cos }^{-1}}\sqrt{1-{{\sin }^{2}}\theta }
=cos1(cosθ)=θ=sin1t={{\cos }^{-1}}(\cos \theta )=\theta ={{\sin }^{-1}}t
Now, dxdt=31t2\frac{dx}{dt}=\frac{3}{\sqrt{1-{{t}^{2}}}} dxdt=11t2\frac{dx}{dt}=\frac{1}{\sqrt{1-{{t}^{2}}}}
\Rightarrow dydx=dydt.dtdx\frac{dy}{dx}=\frac{dy}{dt}.\frac{dt}{dx} dydx=11t2×1t23=13\frac{dy}{dx}=\frac{1}{\sqrt{1-{{t}^{2}}}}\times \frac{\sqrt{1-{{t}^{2}}}}{3}=\frac{1}{3}