Question
Mathematics Question on Derivatives
If x=sin−1(3t−4t3) and y=cos−1(1−t2), then dxdy is equal to
A
21
B
32
C
31
D
52
Answer
31
Explanation
Solution
x=sin−1(3t−4t3) and y=cos−1(1−t2) Put t=sinθ ...(i) Then, x=sin−1(3sinθ−4sin3θ)
=sin−1(sin3θ)=3θ=3sin−1t and y=cos−11−sin2θ
=cos−1(cosθ)=θ=sin−1t
Now, dtdx=1−t23 dtdx=1−t21
⇒ dxdy=dtdy.dxdt dxdy=1−t21×31−t2=31