Question
Question: If \(x = \sec\varphi - \tan\varphi,y = \text{cosec}\varphi + \cot\varphi,\) then...
If x=secφ−tanφ,y=cosecφ+cotφ, then
A
x=y−1y+1
B
x=y+1y−1
C
y=1+x1−x
D
None of these
Answer
x=y+1y−1
Explanation
Solution
We have xy=(secφ−tanφ)(cosecφ+cotφ)
=cosφ1−sinφ.sinφ1+cosφ
⇒xy+1=cosφsinφ1−sinφ+cosφ−sinφcosφ+sinφcosφ
=cosφsinφ1−sinφ+cosφ …..(i)
x−y=(secφ−tanφ)−(cos⥂⥂ecφ+cotφ)
=cosφ1−sinφ−sinφ1+cosφ=cosφsinφsinφ−sin2φ−cosφ−cos2φ
=cosφsinφsinφ−cosφ−1 …..(ii)
Adding (i) and (ii) we get, xy+1+(x−y)=0
⇒x=y+1y−1.