Solveeit Logo

Question

Question: If \(x = \sec\varphi - \tan\varphi,y = \text{cosec}\varphi + \cot\varphi,\) then...

If x=secφtanφ,y=cosecφ+cotφ,x = \sec\varphi - \tan\varphi,y = \text{cosec}\varphi + \cot\varphi, then

A

x=y+1y1x = \frac{y + 1}{y - 1}

B

x=y1y+1x = \frac{y - 1}{y + 1}

C

y=1x1+xy = \frac{1 - x}{1 + x}

D

None of these

Answer

x=y1y+1x = \frac{y - 1}{y + 1}

Explanation

Solution

We have xy=(secφtanφ)(cosecφ+cotφ)xy = (\sec\varphi - \tan\varphi)(\text{cosec}\varphi + \cot{}\varphi)

=1sinφcosφ.1+cosφsinφ= \frac{1 - \sin\varphi}{\cos\varphi}.\frac{1 + \cos\varphi}{\sin\varphi}

xy+1=1sinφ+cosφsinφcosφ+sinφcosφcosφsinφ\Rightarrow xy + 1 = \frac{1 - \sin\varphi + \cos\varphi - \sin\varphi\cos\varphi + \sin\varphi\cos\varphi}{\cos\varphi\sin\varphi}

=1sinφ+cosφcosφsinφ= \frac{1 - \sin\varphi + \cos\varphi}{\cos\varphi\sin\varphi} …..(i)

xy=(secφtanφ)(cos⥂⥂ecφ+cotφ)x - y = (\sec\varphi - \tan\varphi) - (\cos ⥂ ⥂ ec\varphi + \cot\varphi)

=1sinφcosφ1+cosφsinφ=sinφsin2φcosφcos2φcosφsinφ= \frac{1 - \sin\varphi}{\cos\varphi} - \frac{1 + \cos\varphi}{\sin\varphi} = \frac{\sin\varphi - \sin^{2}\varphi - \cos\varphi - \cos^{2}\varphi}{\cos\varphi\sin\varphi}

=sinφcosφ1cosφsinφ= \frac{\sin\varphi - \cos\varphi - 1}{\cos\varphi\sin\varphi} …..(ii)

Adding (i) and (ii) we get, xy+1+(xy)=0xy + 1 + (x - y) = 0

x=y1y+1\Rightarrow x = \frac{y - 1}{y + 1}.