Solveeit Logo

Question

Question: If \(x = \sec\theta + \tan\theta,\) then \(x + \frac{1}{x} =\)...

If x=secθ+tanθ,x = \sec\theta + \tan\theta, then x+1x=x + \frac{1}{x} =

A

1

B

2secθ2\sec\theta

C

2

D

2tanθ2\tan\theta

Answer

2secθ2\sec\theta

Explanation

Solution

Given that x=secθ+tanθx = \sec\theta + \tan\theta

x+1x=secθ+tanθ+1secθ+tanθ\Rightarrow x + \frac{1}{x} = \sec\theta + \tan\theta + \frac{1}{\sec\theta + \tan\theta}

=secθ+tanθ+secθtanθ=2secθ= \sec\theta + \tan\theta + \sec\theta - \tan\theta = 2\sec\theta