Solveeit Logo

Question

Question: If x satisfies \|x − 1\|+ \|x − 2\| + \|x − 3\| ≥ 6, then...

If x satisfies |x − 1|+ |x − 2| + |x − 3| ≥ 6, then

A

0 ≤ x ≤ 4

B

x ≤−2 or x ≥ 4

C

x ≤ 0 or x ≥ 4

D

None of these

Answer

x ≤ 0 or x ≥ 4

Explanation

Solution

|x − 1| + |x −2| + |x − 3| ≥ 6

Consider f(x) = |x − 1| + |x + 2| + | x − 3|

f(x)={63x,x<14x,x,3x6,1x<22x<3x3 f(x) = \left\{ \begin{matrix} 6 - 3x, & x < 1 \\ \begin{matrix} 4 - x, \\ x, \\ 3x - 6, \end{matrix} & \begin{matrix} 1 \leq x < 2 \\ 2 \leq x < 3 \\ x \geq 3 \end{matrix} \end{matrix} \right.\

Graph of f(x) shows f(x) ≥ 6 for x ≥ 0 or x ≥ 4