Solveeit Logo

Question

Question: If x satisfies the equation \[{{\log }_{\dfrac{1}{3}}}\left( x-1 \right)+{{\log }_{\dfrac{1}{3}}}\le...

If x satisfies the equation log13(x1)+log13(x+1)+log3(5x)<1{{\log }_{\dfrac{1}{3}}}\left( x-1 \right)+{{\log }_{\dfrac{1}{3}}}\left( x+1 \right)+{{\log }_{\sqrt{3}}}\left( 5-x \right)<1, then x lies in the interval
(a) (1, 3)
(b) (2, 5)
(c) (1, 2)
(d) (4,)(4,\infty )

Explanation

Solution

Hint: First of all find the value of x by using the domain of a logarithmic function that is if logax{{\log }_{a}}x, x > 0, a > 0 and a1a\ne 1. Now, solve the given equation and substitute in it the values of x that you got earlier to find the final interval of x.

Complete step-by-step answer:

We are given that if x satisfies equation log13(x1)+log13(x+1)+log3(5x)<1{{\log }_{\dfrac{1}{3}}}\left( x - 1 \right)+{{\log }_{\dfrac{1}{3}}}\left( x+1 \right)+{{\log }_{\sqrt{3}}}\left( 5-x \right)<1 then we have to find the interval in which x lies. Let us consider the equation given in the question
log13(x1)+log13(x+1)+log3(5x)<1{{\log }_{\dfrac{1}{3}}}\left( x-1 \right)+{{\log }_{\dfrac{1}{3}}}\left( x+1 \right)+{{\log }_{\sqrt{3}}}\left( 5-x \right)<1
First of all, we know that in logax{{\log }_{a}}x, x and a must be greater than 0 and a1a\ne 1. So we get,
(x1)>0\left( x-1 \right)>0
So, x>1.....(i)x>1.....\left( i \right)
And (x+1)>0\left( x+1 \right)>0
So, x>1....(ii)x>-1....\left( ii \right)
And, (5x)>0\left( 5-x \right)>0
x<5....(iii)x<5....\left( iii \right)
By considering equation (i), (ii) and (iii), we get,
x(1,5)....(iv)x\in \left( 1,5 \right)....\left( iv \right)
Now, let us solve the given equation.
log13(x1)+log13(x+1)+log3(5x)<1{{\log }_{\dfrac{1}{3}}}\left( x-1 \right)+{{\log }_{\dfrac{1}{3}}}\left( x+1 \right)+{{\log }_{\sqrt{3}}}\left( 5-x \right)<1
We know that 1a=a1\dfrac{1}{a}={{a}^{-1}} and a=a12\sqrt{a}={{a}^{\dfrac{1}{2}}}. By using this in the above equation, we get,
log(3)1(x1)+log(3)1(x+1)+log(3)13(5x)<1{{\log }_{{{\left( 3 \right)}^{-1}}}}\left( x-1 \right)+{{\log }_{{{\left( 3 \right)}^{-1}}}}\left( x+1 \right)+{{\log }_{{{\left( 3 \right)}^{\dfrac{1}{3}}}}}\left( 5-x \right)<1
We know that loganxm=mnlogax{{\log }_{{{a}^{n}}}}{{x}^{m}}=\dfrac{m}{n}{{\log }_{a}}x. By using this in the above equation, we get,
11log3(x1)+(11)log3(x+1)+113log3(5x)<1\dfrac{1}{-1}{{\log }_{3}}\left( x-1 \right)+\left( \dfrac{1}{-1} \right){{\log }_{3}}\left( x+1 \right)+\dfrac{1}{\dfrac{1}{3}}{{\log }_{3}}\left( 5-x \right)<1
log3(x1)log3(x+1)+3log3(5x)<1\Rightarrow -{{\log }_{3}}\left( x-1 \right)-{{\log }_{3}}\left( x+1 \right)+3{{\log }_{3}}\left( 5-x \right)<1
We know that nlogam=logamnn{{\log }_{a}}m={{\log }_{a}}{{m}^{n}}. By using this in the above equation, we get,
log3(x1)1+log3(x+1)1+log3(5x)3<1{{\log }_{3}}{{\left( x-1 \right)}^{-1}}+{{\log }_{3}}{{\left( x+1 \right)}^{-1}}+{{\log }_{3}}{{\left( 5-x \right)}^{3}}<1
Now we know that logam1+logam2+logam3....=logam1m2m3....{{\log }_{a}}{{m}_{1}}+{{\log }_{a}}{{m}_{2}}+{{\log }_{a}}{{m}_{3}}....={{\log }_{a}}{{m}_{1}}{{m}_{2}}{{m}_{3}}....
By using this in the above equation, we get,
log3(x1)1(x+1)1(5x)3<1{{\log }_{3}}{{\left( x-1 \right)}^{-1}}{{\left( x+1 \right)}^{-1}}{{\left( 5-x \right)}^{3}}<1
log3(5x)3(x1)(x+1)<1\Rightarrow {{\log }_{3}}\dfrac{{{\left( 5-x \right)}^{3}}}{\left( x-1 \right)\left( x+1 \right)}<1
We can also write logam<b{{\log }_{a}}m < b as m<(a)bm < {{\left( a \right)}^{b}} if a>1a > 1. By using this in the above equation, we get,
(5x)3(x1)(x+1)<(3)1\dfrac{{{\left( 5-x \right)}^{3}}}{\left( x-1 \right)\left( x+1 \right)}<{{\left( 3 \right)}^{1}}
(5x)3(x1)(x+1)<3....(v)\dfrac{{{\left( 5-x \right)}^{3}}}{\left( x-1 \right)\left( x+1 \right)}<3....\left( v \right)
Now as we have already calculated that x(1,5)x\in \left( 1,5 \right), we can find the values of x from the above equation by substituting the values in the small intervals between (1, 5) and checking if it is satisfying the above equation or not.
So, let us take x(1,2)x\in \left( 1,2 \right) for instance take x = 1.5
By substituting x = 1.5 in equation (v), we get,
(51.5)3(1.51)(1.5+1)<3\dfrac{{{\left( 5-1.5 \right)}^{3}}}{\left( 1.5-1 \right)\left( 1.5+1 \right)}<3
(42.875)(0.5)(2.5)<3\dfrac{\left( 42.875 \right)}{\left( 0.5 \right)\left( 2.5 \right)}<3
34.3<334.3<3
So, we can see that the above inequality is not true. So x(1,2)x\notin \left( 1,2 \right).
Now, let us take x(2,3)x\in \left( 2,3 \right) for instance take x = 2.5
By substituting x = 2.5 in equation (v), we get,
(52.5)3(2.51)(2.5+1)<3\dfrac{{{\left( 5-2.5 \right)}^{3}}}{\left( 2.5-1 \right)\left( 2.5+1 \right)}<3
15.625(1.5)(3.5)<3\dfrac{15.625}{\left( 1.5 \right)\left( 3.5 \right)}<3
2.97<32.97<3
As we can see that the above inequality is true. So, x(2,3)x\in \left( 2,3 \right).
Now, let us take x(3,4)x\in \left( 3,4 \right) for instance take x = 3.5
By substituting x = 3.5 in equation (v), we get,
(53.5)3(3.51)(3.5+1)<3\dfrac{{{\left( 5-3.5 \right)}^{3}}}{\left( 3.5-1 \right)\left( 3.5+1 \right)}<3
3.375(2.5)(4.5)<3\dfrac{3.375}{\left( 2.5 \right)\left( 4.5 \right)}<3
0.3<30.3<3
As we can see that the above inequality is true. So, x(3,4)x\in \left( 3,4 \right).
Now, let us take x(4,5)x\in \left( 4,5 \right) for instance take x = 4.5
By substituting x = 4.5 in equation (v), we get,
(54.5)3(4.51)(4.5+1)<3\dfrac{{{\left( 5-4.5 \right)}^{3}}}{\left( 4.5-1 \right)\left( 4.5+1 \right)}<3
0.125(3.5)(5.5)<3\dfrac{0.125}{\left( 3.5 \right)\left( 5.5 \right)}<3
0.00649<30.00649<3
As we can see that the above inequality is true. So, x(4,5)x\in \left( 4,5 \right).
So, x(2,3)(3,4)(4,5)x\in \left( 2,3 \right)\cup \left( 3,4 \right)\cup \left( 4,5 \right).
So, we finally get x(2,5)x\in \left( 2,5 \right).
Hence, option (b) is the right answer.

Note: In this question, first of all, it is very important to check the domain of the function that is for logax,x>0,a>0{{\log }_{a}}x,x>0,a>0 and a1a\ne 1. Now for the equation (5x)3(x1)(x+1)<3\dfrac{{{\left( 5-x \right)}^{3}}}{\left( x-1 \right)\left( x+1 \right)}<3, it is better to substitute x in the interval (1, 5) than finding x by solving the equation because it will become very long if we go for solving the equation.